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Part I

Single particle quantum mechanics
and disorder

1 Fundamentals of disordered systems

1.1 Perturbation theory and Diagrams

The quantum mechanical single particle problem of motion in an impure environment is
described by a Hamiltonian which includes the superposition of many impurity potentials.

Ĥ = Ĥkin + V (r̂); V (r̂) =
∑
i

v(r̂−Ri). (1)

For simplicity, we here consider v(r − R) = V0δ(r − R). A diagrammatic theory follows
from the expansion of

ĜR(E) = [E + iη − Ĥ]−1 =
∞∑
n=0

Ĝ0(E)[V̂ ĜR,0(E)]n, ĜR,0(E) = [E + iη − Ĥkin]−1. (2)

Typically, an impurity is represented as cross and the potential as a dashed line, see Fig. 1.

Whenever one is interested in macroscopic response functions, it is plausible to treat the
positions R of impurities statistically and average

〈. . . 〉dis. =

∫ ∏
i

ddRi

Ld
. . . . (3)

The impurity problem is thus equivalent to a problem made up of a random potential
with a given probability distribution. In the limit when impurities are infinitely weak but
infinitely dense

nimpV
2

0 = const.; n−1
imp → 0, V0 → 0 (4)

this distribution is Gaussian and white noise, see Fig. 1 b, c.

〈V (r)V (r′)〉dis. = nimpV
2

0 δ(r− r′) (5a)
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Figure 1: Diagramatic representation of corrections due to disorder. a) A cross represents
an impurity at position R, and the dashed line v(r − R). b) After average, the leading
non-trivial diagram contains two dashed lines connecting to the same impurity. It is thus
O(nimpV

2
0 ) c) This diagram is O(nimpV

3
0 ) and negligible in the limit of dense weak impu-

rities (Born limit). d) Disorder correction to a correlation function. e) A diagram which
is reducible w.r.t. disorder lines and should be dropped.

which is equivalent to a disorder average

〈. . . 〉dis =

∫
DV exp

−
∫
ddx

V (x)2

2nimpV
2
0︸ ︷︷ ︸

P[V ]

. (5b)

We concentrate on the limit of Gaussian white noise disorder in the entire course. In
this limit, the cross is typically dropped after disorder average and the dashed line simply
represents the correlator Eq. 5a.

Thus, to evaluate the disorder average of an observable

• dress the clean diagram with disorder lines

• keep only diagrams which are irreducible w.r.t. to disorder lines, see Fig. 1 d,e.

The reason to drop reducible diagrams follows from the procedure of adding crosses to the
Green’s function and average afterwards.

6



1.2 Overview of methods to average ln(Z)

Consider the polarization operator as a representative observable

〈Π(x, τ ; x′, τ ′)〉dis. = −〈 δ2

δφ(x, τ)δφ(x′, τ ′)
ln(Z[φ])

∣∣∣∣
φ=0

〉dis.. (6)

To obtain average observables - need average of ln(Z[φ]) (or equivalently a method in which
Z[φ = 0] = 1).

There are three known options

• Supersymmetry: Exploits that Bosonic and Fermionic determinants cancel

Zζ =

∫
Dψe−

∫
ψ̄Mψ = det(M)−ζ ,

{
ζ = 1, bosons,

ζ = −1, fermions,
(7)

and one actually introduces the full partition function as ZSUSY = Zζ=−1Zζ=+1

+ Mathematical rigor.

+ Leads to finite dimensional NLσM target manifolds (which can conveniently
parametrized and exactly solved!)

- Mathematical complexity.

- Impractical for many-body physics.

• Keldysh formalism, which exploits that

Z[φcl, φq = 0] = 1. (8)

+ Can also treat non-equilibrium

+ Can treat many-body interactions.

- Symmetry group structure is mathematically less transparent.

• Replica trick

lnZ = lim
R→0

ZR − 1

R
. (9)

+ Simplest.

+ The omission of disorder reducible diagrams is obvious.

+ Can handle interactions.

- Involves artificial and sometimes tricky analytical continuation from R ∈ N to
R ∈ R and then limit R→ 0.

We stick to replicas throughout the lecture course.
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2 Diffusion theory: “mean field” treatment of disor-

dered systems

In this section we present the saddle point theory of disordered electron systems. Quantum
fluctuations about this saddle point are included in the next chapter.

2.1 Derivation of the NLσM - orthogonal class AI

2.1.1 Disorder average of replicated partition function

We replicate the Matsubara partition function (in the first line we explicitly show summa-
tion symbols - in the remainder we will use Einstein convention)

S = T
∑
εn

R∑
α=1

∑
σ=↑,↓

∫
x

ψ̄σ,α,n(x)[−iεn +Hkin(p̂) + V (x)]ψσ,α,n(x); (10a)

ZR =

〈∫ R∏
α=1

D[ψ̄σ,α, ψσ,α]e−S

〉
dis.

=

∫ R∏
α=1

D[ψ̄σ,α, ψσ,α]
{

exp

[
−T

∫
x

ψ̄σ,α,n(x)(−iεn +Hkin(p̂))ψσ,α,n(x)

]
× exp

[
T 2nimpV

2
0

2

∫
x

ψ̄σ,α,nψσ,α,nψ̄ρ,β,mψρ,β,m

]}
(10b)

We see that disorder introduces an effective attractive “interaction” which is local in
space and completely non-local in time (remember that it is mediated by a field which
is quenched).

The next step is to Hubbard-Stratonovich decouple this field in all possible channels:

• the density density (just undoing what we just did)

• the particle hole exchange channel

• the particle-particle (or Cooper channel).

Remarks:
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• These channels are to be considered channels of small momentum transfer as com-
pared to kF - so we need to simultaneously decouple in all of them.

• The effect of the particle-particle channel is just to renormalize the chemical potential.
It is therefore typically dropped.

2.1.2 Introducing Nambu space

Since we have to decouple in the Cooper channel it is wise to introduce Nambu spinors
even before disorder average (in what follows C = iσyτx)

Φn =
√
T

(
ψn

−iσyψ̄Tn

)
and Φ̄ = (CΦ)T =

√
T (ψ̄, ψT (−iσy)). (11)

From now on summation over all internal indices (spin, Nambu, Matsubara, replica) is
implied in a matrix multiplication.

Then, prior to disorder average

S =
1

2

∫
x

Φ̄(x)

(
−iε̂+ Ĥ 0

0 −iε̂+ σyĤ
Tσy

)
Φ(x) (12a)

average→ S0 −
nimpV

2
0

8

∫
x

Φ̄iΦiΦ̄jΦj (12b)

HS in 2 channels→ S0 +
1

2

∫
x

Φ̄i(−i)
1

2τ
MijΦj +

1

16τ 2nimpV 2
0

trM2 (12c)

We have used that

• We used a multiindex i = (σ, τ, α, n)

• For the simplest case, with slight abuse of notation, Hkin(p̂) = −∇2/2m− µ, Ĥkin =
σyH

T
kinσy

• S0 = −1
2

∫
p

Φ̄σαn(−p) [iεn −Hkin(p)]︸ ︷︷ ︸
G−1

0 (εn,p)

Φσαn(p)

• The matrix field M has the symmetry property

M = CMTCT . (12d)

9



2.1.3 Saddle point equation

We seek a solution for spatially independent M , in which case

S
Integrate fermions→ 1

16τ2nimpV
2
0

tr [M2]− 1
2
Tr ln(Ĝ−1

0 +
i

2τ
M︸ ︷︷ ︸

Ĝ−1
M

) (13)

Thus the saddle point equation is

0 =
δS

δMji

=
Mij

8τ 2nimpV 2
0

− i

4τ

∫
p

[GM(p)]ij︸ ︷︷ ︸
=〈[ΦΦTC]ij〉

⇔ M

τ
= 2inimpV

2
0

∫
p

[iε̂−Hkin(p) +
i

2τ
M ]−1 (14a)

A low-energy solution (small |εn| � µ) to this equation is

M = Λ =


. . . 0 0 0
0 1 0 0
0 0 −1 0

0 0 0
. . .


Matsubara

× 1spin,Nambu,replica,
1

τ
= 2πnimpV

2
0 (15)

Remarks

• Throughout the notes ν is the DOS per spin degree of freedom at the Fermi level.

• We’ll discuss a set of other saddle point solutions in a second, Sec. 2.1.4 and some
others in the part on level statistics, Sec. ??

2.1.4 Symmetries, Goldstone manifold

We consider the symmetries of the UV action, Eq. (12a), disregarding the frequency part.

(This strategy is more obvious if we keep only two replicas and Wick rotate

i

(
εn 0
0 −εn

)
≡ i|εn|Λ→ E ± iηΛ|η→0. (16)
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Clearly, in the η → 0 limit, there frequency term just adds to the chemical potential and
has no impact.)

We see that Eq. (12a) in the case conidered so far Ĥ ∝ 1σ (no structure in spin space) and
Ĥ = σyĤ

Tσy has the continuous symmetry

Φ(x)→ TΦ(x), where T T τxσyT = τxσy, i.e. T ∈ G = Sp(2σ × 2τ × 2M ×R), (17)

Applying this rotation in the presence of the vacuum expectation of the field M = Λ, we
find that

Λ→ Q ≡ T−1ΛT ∈ G/H, (18)

spans a continuous manifold of energetically equivalent mean field solutions.

The quotient space G/H of the Goldstone manifold is obvious when considering that

T =

(
T1 0
0 T2

)
Matsubara

∈ H ≡ Sp(2σ × 2τ ×M ×R)× Sp(2σ × 2τ ×M ×R) (19)

leaves the saddle point solution invariant.

2.2 Gradient expansion

We now consider slow variations of the mean field solutions inside the Goldstone manifold

Q(x) = T−1(x)ΛT (x) ∈ G/H. (20)

We return to the fermionic action prior to integrating fermions and include a vector po-

tential ([Â]nn′ =
∑

m A(ωm)δn−n′,m, Âτz = diag(Â,−Â
T

)) for future reference

S =

∫
x

Φ̄(x)[−iε̂+
(−i∇+ Âτz)

2

2m
− µ− i

2τ
Q(x)]Φ(x)

=

∫
x

Φ̄′(x)[T (x)

(
−iε̂+

(−i∇+ Âτz)
2

2m

)
T−1(x)− µ− i

2τ
Λ] Φ′(x)︸ ︷︷ ︸

=:T (x)Φ(x)

=

∫
x

Φ̄′(x)

−ĜΛ−iT (x)ε̂T (x)−1 +
A2
µ

2m︸ ︷︷ ︸
Ô1

+
{p̂µ,Aµ}

2m︸ ︷︷ ︸
Ô2

Φ′(x). (21)

Here, we introduced Aµ = T (x)(−i∇µ + Aτz ,µ)T−1(x), G−1
Λ (εn,p) = iεn − p2/2m + µ +

isign(εn)/2τ , and µ, ν = 1, . . . , d
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Gradient expansion then leads to

S = −1

2
Tr ln(Ĝ−1

Λ − Ô1 − Ô2)

' 1

2
Tr ln(ĜΛÔ1) +

1

4
tr (ĜΛÔ2ĜΛÔ2) +O(ε̂2,∇3). (22)

We begin by evaluating the O2 term (i, j are multiindices for replica, Nambu, spin space
here)

SO2 ' 1

4

∫
p,x

vµvνGΛ(εn,p)GΛ(εn+m,p)Aij,ν
n,n+m(x)Aji,µ

n+m,n(x)

θ(εnεn+m)︸ ︷︷ ︸
RR+AA

+ θ(−εnεn+m)︸ ︷︷ ︸
RA


1/τ�ωm' 1

4

∫
p,x

v2

d
GΛ(εn,p)GΛ(εn+m,p)Aij,µ

n,n+m(x)Aji,µ
n+m,n(x)θ(−εnεn+m)

− 1

4m

∫
p

GΛ(εn,p)︸ ︷︷ ︸
−iπνsign(εn)

∫
x

Aij,µ
n,n+m(x)Aji,µ

n+m,n(x)θ(εnεn+m) (23)

In the last line, we used that for the RR + AA diagrams, we could approximate

vνGΛ(εn,p)GΛ(εn+m,p) ' vνGΛ(εn,p)2 = ∂pνGΛ(εn,p),

and a partial integration.

On the other hand, we may directly employ the MF SCBA equation, Eq. (14a), to get

SO1 =
1

2

∫
x

[ ĜΛ(εn)]x,x︸ ︷︷ ︸
=−iπνsign(εn)

[−iT ε̂T T +
~A2

2m
]iin,n (24)

We thus find

SO1 + SO2 = −πν
2

∫
x

sign(εn)

[T ε̂T T ]iin,n + i
~Aij
n,n+m(1− θ(εnεn+m))~Aji

n+m,n

2m︸ ︷︷ ︸
⇒0


+

∫
x

1

4d

∫
p

v2

(p2/2m− µ)2 + (1/2τ)2︸ ︷︷ ︸
2πνv2F τ

∫
x

~Aij
n,n′

~Aji
n′,nθ(−εnεn′) (25)
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The vanishing second term in the round brackets follows from the properties of the trace

sign(εn)~Aij
n,n′

~Aji
n′,nθ(−εnεn′) =

∑
±

tr [Λ~A
1± Λ

2
~A

1∓ Λ

2
]

=
∑
±

∓tr [~A
1± Λ

2
~A

1∓ Λ

2
]

= 0. (26)

We finally use in the last line

~Aij
n,n′

~Aji
n′,nθ(−εnεn′) =

∑
±

tr [~A
1± Λ

2
~A

1∓ Λ

2
]

=
1

2
tr [~A2 − ~AΛ~AΛ]

= −1

4
tr [[~A,Λ]2]

=
1

4
tr [(DµQ)2], (27)

where
DµQ = ∂µQ+ i[Âτz ,µ, Q]. (28)

Thus, in total we found

S =

∫
x

tr [
σ

32
(DµQ)2 − 2zε̂Q].

Action of Diffusive NLσM

(29)

where σ = 4πνv2
F τ/d, z = πν/4 at the level of this calculation.

Comments

• This is the effective quantum diffusion theory valid at length scales larger than mean
free path ` = vF τ .

• From the Matsubara NLSM Eq. (29), one may obtain the Retarded/Advanced sigma
model as follows:

– keep only one retarded and one advanced Matsubara frequency called εn1εn2

(The matrix size of Q is then just 2σ × 2τ × 2Mats.R)

– analytically continue

iε̂→
(
εn1 0
0 εn2

)
→
(
E1 + iη 0

0 E2 − iη

)
≡ E + [ω/2 + iη]Λ (30)

where E1,2 = E ± ω/2.
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– The sigma model becomes (use trQ = 0)

S =

∫
x

σ

32
tr [(DµQ)2] + izωtr [ΛQ]. (31)

• From σ(n) = − 1
Z

1
ωm

δ2Z
∂Am∂A−m

and setting Q = Λ, we find that the parameter σ in

Eq. (29) is the physical conductivity at the mean-field (i.e. Drude) level in units of
e2/h. To be specific let’s do the calculation for the RA formulation using

~̂A =

(
~A++ ~A+−

~A−+ ~A−−

)
R/A

⇒
[
~̂Aτz ,Λ

]
= 2


0

(
− ~A+− 0

0 ~A−+

)
τ(

~A−+ 0

0 − ~A+−

)
τ

0


R/A

(32)

So that

S[Q = Λ] = σ

∫
x

∑
α

~A+−
α · ~A−+

α . (33)

Note that A++, A−− don’t enter, for the response we only need derivatives w.r.t.
A±,∓.

• Note that this is a theory with dynamical exponent zQ = 2, i.e. two spatial gradients
and one frequency (= we’ll see it’s a diffusion theory with D = σ/4z the diffusion
constant)

• Our result for the conductivity (written in Einstein form)

σ = 2σ × 2πνD
e2

h
(34)

with D = v2
F τ/d is actually a factor of 2 too large (i.e. the parameter τ should be

replaced by τtr = τ/2). This mismatch with Drude theory can be cured if we also
integrate out longitudinal (=Higgs) modes (which we just dropped altogether).

2.3 Soft modes (Goldstone bosons) - Wigner Dyson classes

In this section, we categorize soft modes of the sigma model manifold. We keep the model
without Matsubaras to keep the notation lighter in indices.
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We parametrize

T (x) = eW/2 ∈ G = Sp(8R)

⇔ W T = −τxσyWτxσy. (35)

However, only those T ∈ G/H are relevant, i.e. we need to require

WΛ = −ΛW ⇔ W =

(
0 w
−w̄ 0

)
with w̄T = τxσywτxσy. (36)

The Q field becomes
Q ' Λ + ΛW + ΛW 2/2 (37)

leading to

S =
σ

32

∫
(dq)D−1(q, ω)tr [ΛW (−q)ΛW (q)] (38)

=
σ

16

∫
(dq)D−1(q, ω)tr τ,σ,R[w̄(−q)w(q)] (39)

where [
D−1(q, ω)

]αβ
= q2 − iω

D
(40)

A convenient parametrization is (σa = (1σ, ~σ)a)

wαβ(q) =
1

2

(
λad̄

αβ
a (−q) cαβa (q)

λac̄
αβ
a (−q) dαβa (q)

)
τ

σa, (41a)

(41b)

where λa = 1 for a = 0, λa = −1, else. Here, the fields d are complex and d̄ is the complex
conjugate of d. Note that we have 4spin × 2d and c × R2 complex fields, i.e. 16 real modes,
consistent with the parametrization chosen using the 16R2 generators of the manifold.

The parametrization is chosen such that the diagonal action is

S0[d, c] =
σ

16

∫
q

∑
αβ

3∑
a=0

[
D−1(q)

]αβ
n1,n2[

d̄αβa dαβa + c̄αβa cαβa
]
. (42)

Remarks

• The Sigma model theory is universal : all UV physics at length scales below ` = vF τ
is washed out.

15



• We have a total of 8 soft modes:

– Diffusons with Nambu space structure τ0, τ1

– There are 4 Diffusons: 1 singlet (a = 0) and 3 triplets (a = 1, 2, 3)

– Cooperons, with Nambu space structure τx, τy

– There are again 4 of them: 1 singlet and 3 triplets.

• Each of these soft modes carries two replica indices, αβ.

• These Goldstone modes can also be understood diagrammatically as ladder resum-
mations. And we’ll explain it in the the next section in more details.

• breaking some of the symmetries kills some of the soft-modes:

– Triplet soft modes are massive in the absence of spin-rotation symmetry. To see
this, consider 2D and HRashba = αêz(p× ~σ) = σyH

T
Rashbaσy, so that

δS =

∫
x

Φ̄

(
αêz(p× ~σ) 0

0 êz(p× ~σ)

)
Φ. (43)

Then, the symmetry group is G = {O|OT τxσ0,x,y,zO}, i.e. G = O(2tau×2M×R)
and H = O(2M × R)× O(2M × R) - the NLσM fields Q don’t carry any spin
index any longer.

– All cooperons are massive if TR is broken, H 6= σyH
Tσy and we shouldn’t have

gone to Nambu space. Then, the symmetry group is G = U(2σ × 2M ×R) and
H = U(2σ ×M ×R)× U(2σ ×M ×R)

2.4 10-fold way: Altland-Zirnbauer classification.

We have seen above that that yes/no TR and yes/no SU(2) spin symmetry leads to three
different types of NLσM - otherwise the physics beyond ` is universal.Here, we formalize
the symmetries of the Hamiltonian and extend the universality concept from three Wigner
Dyson classes to all 10 Altland-Zirnbauer classes.

The Wigner-Dyson symmetry classes are the most conventional symmetry classes and
appeared first in the context of Random Matrix Theory and complex nuclei in the 1950’s.
The symmetry distinguishing the three Wigner-Dyson classes is time reversal symmetry. In
a quantum mechanical system with spin it is realized by an antiunitary operator T = iσyK,
thus T 2 = −1. However, if spin-rotation symmetry is present one may combine T with a
rotation about y by −π so that e−iπσy/2T = K. Thus, in general, T = UK (U unitary,
K denotes complex conjugation) might square to +1 or −1 depending on the spin of the
particles (integer or half-integer).
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The Altland Zirnbauer classification is a classification of random matrices and disordered
systems and thus explicitly is not categorizing systems by means of their unitary symme-
tries Therefore, actually, in the presence of SU(2) symmetry, one should consider Hamilto-
nians for spin up and spin down separately. It turns out to be equivelent to the classification
of symmetric and homogeneous spaces due to Elie Cartan.

Mathematical digression: A symmetric space is a connected Riemannian manifold (M,
〈., .〉) in which for all points p ∈ M there is a an isometry sp : M → M , such that
1. s(p) = p and 2. the corresponding differential mapping dsp : TpM → TpM is the
‘reflection’ dsp = −id|TpM . This geometric definition is isomorphic to the spaces G/H,
in which there is an operation in the Lie Algebra of G which leaves the generators of the
subgroup invariant and reverses all others.

This is the generic recipe:

1. Block diagonalize the Hamiltonian w.r.t. all unitary symmetries. The following
recipe should then be applied to each block separately.

2. Subsequently, characterize the system by its following symmetries.

(a) Time reversal symmetry T = UK (U unitery)

T : H → UHTU−1. (44)

There is a total of three options: The time-reversal symmetry is absent, present
and T 2 = 1, or present and T 2 = −1.

As long as one requires the Hamiltonian to be invariant under energy shifts (i.e.
somewhere deep in a band), TR is the only relevant symmetry.

We now explain the different symmetry classes and the emergence of different
soft modes in the different Wigner-Dyson classes.

Broken time reversal symmetry: unitary class (Cartan-symbol: A). In
this case, the only restriction on the Hamiltonian H is hermiticity. Therefore,
the quantum mechanical evolution operator is an element of the unitary group,
to which Cartan assigned the symbol A. The only soft-mode present in the
diffusive regime is the retarded-advanced Diffuson

R

A

= DRA.

Preserved time reversal and spin rotation symmetry: orthogonal class
(AI). For systems of spinless particles, the time reversal operator T squares to
+1. The most standard representation is T = K. Then, a time reversal invariant
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H is both hermitian and symmetric, and therefore iH generates the coset space
of Lie Groups U(n)

O(n)
which is denoted AI. Next to the RA-Diffuson presented

above, there are also Cooperon modes present. These can be obtained from
the Diffuson by applying time reversal symmetry two one of the the fermionic
Green’s functions, e.g. the lower (here: advanced) one:

R

A

= CRA.

Electronic systems, even though inherently spinful, can also fall into class AI:
If spin is conserved, the Hamiltonian is trivial in spin-space, and reduces to the
one of spinless particles. Then T -invariance implies H = HT . If, however, spin
rotation invariance is broken, the system belongs to class AII, see below.
As explained above, with SU(2) spin symmetry the number of modes is 4 times
larger.

Preserved time reversal and broken spin rotation symmetry: sym-
plectic class (AII). As taught in introductory quantum mechanics courses,
for spinful particles the time reversal operator squares to −1. It can be realized
by T = iσyK. In consequence, H is hermitain and fulfills H = σyH

Tσy and

the coset space U(2n)
Sp(2n)

is spanned. This motivates the nomenclature ”symplectic
class” and is denoted by AII.

(b) Particle Hole symmetry. Another symmetry which is not unitary and intu-
itive in Quantum mechanics is charge conjugation (i.e. particle-hole symmetry)
Q = V K, (V unitary), which maps

Q : H → −V HTV −1. (45)

Again, there are three possibilities: Q is absent, present and squares to one and
present and squares to minus one, again represented by 1 or σy respectively.

Comments:

• Note that in the presence of Q, the spectrum is symmetric about zero
energy.

• As a simple representative to see what the manifold covered by the time
evolution operator eiHt is, let’s consider one representative, in which Q = K
squares to one without any other symmetries. Then H = −HT , which
generates the special orthogonal group (class D - Cartan actually made a
distinction between )

• Particle Hole symmetry generates RR Diffusons and Cooperons, which are
absent in the Wigner Dyson classes, since GR (ε) = −V [GA (−ε)]TV −1.

(c) Chiral symmetry. One has to consider the combined operator C = T ◦ Q,
too. It maps (W unitary)

C : H → −WHW−1. (46)
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Since W is the product of U and V we see that it is either 1 or σy in some basis
and C2 = 1, always.

Comment:

• A typical choice is W = γ5 = diag(1,−1), in which case H is perfectly
off-diagonal.

• Just as Particle Hole symmetry, chiral symmetry generates RR Diffusons
and Cooperons, which are absent in the Wigner Dyson classes, sinceGR (ε) =
−γ5G

A (−ε) γ5.

3. The total number of symmetry classes is thus 3|T =0,±1 × 3|Q=0,±1 + 1 = 10,
where the additional 1 steps from the fact that C can exist or be absent with neither
T nor Q present. Cartan’s classification actually contains 11 classes - orthogonal
matrices with even and odd dimension were considered separately (called classes D
and B respectively). Of course, we also don’t discuss exceptional Lie groups such as
E8.
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2.6 Topological terms

The table in Sec. 2.5 contains columns in which the homotopy groups of the various sigma
model manifolds are listed. A non-trivial homotopy group can lead to the appearance of
topological terms in the sigma model. I won’t derive them here - they are generally related
to anomalies in the fermionic quantum field theory. One example of their derivation will
be given in Sec. ??

While here we just summarize the kind of terms that can appear, we will explicitly demon-
strate how they work in some exemplary cases below.

• Z theta terms in a D-dimensional system.

– rely on πD = Z.

– Represent the possibility of a D dimensional Z topological insulator

– The action takes the form
Sθ = iθN [Q], (47)

where

∗ N [Q] ∈ Z is quantized and counts the (winding-)number of instantons in
Q and thereby affects the way different topological sectors are weighted in
the partition sum.

∗ While θ in general is not quantized.

– If the “angle” θ = π(2n+1), n ∈ Z, the model is critical and localization avoided.
[In only very few cases this statement can be rigorously made, otherwise it’s a
Haldane-like conjecture.]

– The most prominent example is the Pruisken term

Sθ =
σxy
8

∫
d2rεµνtr [QDµQDνQ] = 2πσxyN [Q] (48)

in symmetry class A in D = 2.
It’s clear from differentiating w.r.t Aµ that σxy is the Hall response in units of
e2/h and σxy = 1/2 corresponds to θ = π.

• Wess-Zumino-Novikov-Witten (WZW) terms

– rely on πD+1 = Z.

– Occur on the surface of D+ 1 dimensional Z topological insulators and protect
from Anderson localization.
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– The Action takes the form

SWZW = i2πkΓ[Q],

where

∗ and Γ[Q] measures the solid angle enclosed in a (hyper-)loop.

∗ As a consequence that closing the solid angle into nord-pole or south pole
is arbitrary and ΓNorth[Q]− ΓSouth[Q] ∈ Z, it follows that also k ∈ Z has to
be quantized (otherwise the partition function would be ill-defined).

– As a simple example, let’s consider the QH system in the QH plateau σxx = 0
and σxy ∈ Z so that in the bulk, Eq. (48) becomes (Q = T−1ΛT )

S =

∫
d2x

σxy
2
εµνtr [Λ∂µT∂νT

−1], (49)

which is a total derivative and on the boundary is

S =

∫
dy
σxy
2

tr [ΛT∂yT
−1]. (50)

Note that under a gauge transformation T → diag(h+, h−)T we obtain δS =∫
dy σxy

2

∑
±±tr [h±∂yh

−1
± ] which is a total derivative (obvious if we parametrize

h± = eiW±

– In D = 2 WZW terms can appear in the principal chiral models. For example,
in class DIII the WZW-action for the orthogonal matrix fields is

S =

∫
d2r

σxx
16

tr∇OT∇O+
ik

24π

∫
d2rdwεµνρtr

(
ÕT∇µÕ

)(
ÕT∇νÕ

)(
ÕT∇ρÕ

)
.

(51)
k is an integer called Wess-Zumino level, it has topological origin1 and is thus un-
changed under renormalization. Instead of using a gauge dependent expression
as in Eq. (51), the definition of the WZW term involves introducing the extended
field Õ (~r, w) with the conditions Õ (~r, w = 1) = O (~r) and Õ (~r, w = 0) = const.
. The value of the Wess-Zumino term (which is the integral over a total deriva-
tive) is determined by the physical plane w = 1 only.

• Z2 theta terms

– rely on πD = Z2.

– Occur on the surface of D+ 1 dimensional Z2 topological insulators and protect
surfaces states from Anderson localization

1the instanton number in the dimension above
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– Similarly to the Z theta terms,

Sθ = iθN [Q], (52)

where

∗ N [Q] ∈ Z2 is quantized and counts the (winding-)number of instantons in
Q and thereby affects the way different topological sectors are weighted in
the partition sum.

∗ however, more like in the WZW case, for the Z2 case θ = 0, π is also
quantized.

– It can be understood as descendant of the WZW term. For example, in class AII
the sigma model manifold is a submanifold of the orthogonal group consisting
of traceless symmetric orthogonal matrices. These additional constraints on the
physical plane reduce the WZW-term to the Z2 theta term

iπN [Q] =
ik

24π

∫
d2rdwεµνρtr

(
ÕT∇µÕ

)(
ÕT∇νÕ

)(
ÕT∇ρÕ

)∣∣∣∣
Õ(~r,w=1)=ÕT (~r,w=1)

.

(53)
Note, that both prefactor and integral are quantized.
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3 Localization physics: Quantum fluctuations beyond

the saddle point

So far we have derived the effective saddle point theory. Now we go beyond by incor-
porating quantum corrections about the saddle point. These corrections are controlled
in 1/[σ`D−2] � 1 and incorporate Anderson localization physics, a true quantum phe-
nomenon.

3.1 Linear response, perturbation theory and weak localization

We return to the NLσM in retarded-advanced formulation, Eq. (31). We now want to
calculate the effective quadratic action of electromagnetic source fields

Seff [Aµ] = − ln[

∫
DQe−S[A,Q]] (54)

to leading order in fluctuations. The parameter of expansion is the dimensionless conduc-
tance, which is the stiffness of the NLSM.

For future use, we will do a slightly more general calculation: The vector potential has the
property

Âτz ,µ = −τxσyÂTτz ,µτxσy, (55)

which is the same property as an Sp(2σ × 2τ × 2×R) non-Abelian vector potential

Aµ = −τxσyAT
µτxσy. (56)

In this case, the NLSM action is still

S[A, Q] =

∫
x

tr [
σ

32
(DµQ)2 + izωΛQ]. (57)

but now DµQ = ∂µQ+ i[Aµ, Q].

We also exploit that only R/A components A±,∓ are needed for the response (see Eq. (32))
and we assume that also the generalized

Aµ =

(
0 A+−

µ

A−+
µ 0

)
(58)

is block-off diagonal in R/A space and moreover is a slow field as compared to Q (who’s
typical momenta are determined by ω).
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Thus, the effective action of A is

Seff = − σ

32

∫
x

〈
tr {[Aµ, Q]2}

〉
+

1

2

( σ
16

)2
∫
x,x′
〈tr {Aµ[Q, ∂µQ]}xtr {Aν [Q, ∂νQ]}x′〉 (59)

As above, Eq. (37), we expand Q = Λ + ΛW + ΛW 2/2, where {W,Λ} = 0. We thus
immediately conclude that the second line of Eq. (59) vanishes

tr {Aµ[Q, ∂µQ]} ' tr { Aµ︸︷︷︸
slow

Λ ∂µW︸︷︷︸
fast

} − 2tr { Aµ︸︷︷︸
off−diagonal

W∂µW︸ ︷︷ ︸
diagonal

} → 0. (60)

We thus only need to concentrate on the first line of Eq. (37), which is

δSeff ≡ Seff − Seff [Q = Λ]

= −〈 σ
16

∫
x

tr {(~AΛW )2 + (~AΛ)2W 2︸ ︷︷ ︸
→0 as R→0

}〉

= −σ
8

∫
x

〈tr [(wA−+
µ )2]〉

= − σ

32

〈∫
x

tr

[(
λad̄a ca
λac̄a da

)αβ
σa~A−+

βα′

(
λa′ d̄a′ ca′
λa′ c̄a′ da′

)α′β′
σa′~A−+

β′α

]〉
(61)

We use the correlators following from Eq. (42), slightly generalizing the notation: D0
d(x,x)

is a diffuson singlet, while D1,2,3
d (x,x) are diffuson triplets and analogically for cooperons

denoted Da
c (x,x)

δSeff = −1

2

∫
x

3∑
a=0

∑
±

{
Da
d(x,x)λatr [

1± τz
2

σa~A−+
βα

1∓ τz
2

σa~A−+
βα ]

+Da
c (x,x)λatr [

τx ± iτy
2

σa~A−+
βα

τy ∓ iτx
2

σa~A−+
βα ]
}
. (62)

We return to the specific case of perturbation theory, i.e.

~A−+
αβ = δαβ

(
~A−+
α 0

0 − ~A+−
α

)
and readily find that Diffusons drop out while Cooperons contribution as

δS[A] = 2
∑
a

λaDc(x,x)︸ ︷︷ ︸
δσ

∫
x

∑
α

~A+−
α

~A−+
α (63)
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Figure 2: The calculation of the perturbative conductivity correction appears to stem from
a local operator insertion ~A2 in the NLSM formalism, which is equivalent to maximally
crossed diagrams.

In conclusion we find

σPhys(ω) = σ

(
1 +

2

σ

∑
a

λaD
a
c (x,x) +O(1/σ2)

)
.

Weak localization correction

(64)

We conclude with the following physical observations

• Only Cooperons contribute to δσ at leading order (there is no quantum correction
at leading order in perturbation theory in symmetry class A).

• The contribution of the singlet (triplet) Cooperon enhances (reduces) the conductiv-
ity.

• The integral over the Cooperons is given by (lω =
√
D/ω)

Da
c (x,x) =

∫ 1/` ddq

(2π)d
1

q2 − i/l2ω
'


1

2π2 [1
`
− 1

lω
], d = 3

ln(lω/`)
2π

, d = 2
lω−`
2π
, d = 1

(65)

– In d = 1, 2, this integral diverges, thus the perturbative correction explodes in
the dc limit ω → 0 despite the small prefactor 1/σ

– At finite temperature, we have a finite rate of phase relaxation 1/τφ ∼ T p

(e.g. p = 1 for electron-electron interaction in 2D) leading to the replacement
iω → 1/τφ (i.e. lω → lφ) at smallest frequencies.

• The parametric behavior of quantum corrections can be estimated as follows (see
Fig. 3)
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– The probability of a particle travelling from point A to B is pA→B = |
∑

iAi|2 =∑
i |Ai|2 +

∑
i 6=j A

∗
iAj, where Aij are the possible QM amplitudes in the disor-

dered medium.

– We represent the Ai by a line with arrow from A to B and A∗i with reversed
arrow.

– As we sum over all amplitudes, phases strongly fluctuate as a function of the
disorder realization and only the semiclassical contribution appears to survive

– However, self-intersecting trajectories can have the loop going in either direction
and we need to keep interference corrections as well

– Following Heisenberg, each line has a thickness λF , so the particle occupies
λd−1
F vFdt at each moment in time during the loop.

– Within a certain time t ∈ (τ, τφ), it may access any point in a volume (Dt)d/2,
so that the integrated probability of return is

preturn =

∫ τφ

τ

λd−1
F vFdt

(Dt)d/2
∼ (EF τ)1−d

∫ τφ/τ

1

dt′

(t′)d/2
(66)

which has the same behavior as Dc(x,x).

• Diagramatically this corresponds to maximally crossed diagrams, see Fig. ??.

• Particularly in the case of the 2DEG, it is interesting to study how the effect of
Cooperons is killed by an external magnetic field (i.e. how the crossover from class
AI or AII to A is manifested in the conductivity). The Cooperon is then the operator
inverse of

D̂a,−1
c = (−i∇+ 2eA)2 + 1/lφ,a

2 (67)

where the charge 2e reflects that Cooperons are made of two electrons and we incor-
porated the spin scattering rate into 1/τφ,a → 1/τφ + 1/τSOC(1− δa,0).

The Cooperons form ‘Landau levels’ with spacing ωc = qB/m = 4Be ≡ 4/l2B and
degeneracy BA/(h/2e). Then the integral becomes a sum over Landau levels

Da
c (x,x) =

1

A

∑
q

1

q2 + 1/l2φ,a

→ B

π

∑
n

1

ωc(n+ 1/2) + 1/l2φ,a

=
1

4π

∑
n

1

n+ 1/2 + (lB/2lφ,a)2

=
1

4π

[
ln(nmax + (lB/2lφ,a)

2)− ψ
[
(lB/2lφ,a)

2 + 1/2
]]

(68)

The UV cut-off is given by the condition nmaxωc ∼ 1/` and ψ(x) is the Digamma
funciton.
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Figure 3: Left: Trajectories joining A and B. Right: A self-intersecting loop transversed
in two opposite directions.

This is typically expressed as

σ(B)− σ(0) =
1

2π

∑
a

λa

[
ln

(
l2B

4l2φ,a

)
− ψ

(
l2B

4l2φ,a
+

1

2

)]
Hikami-Larkin-Nagaoka

magnetoconductance

(69)

Fits to this characteristic and universal magnetoconductance are a standard tool in
experimental quantum transport studies to extract τφ and/or τSOC.

3.2 Strong Anderson localization and phenomenological scaling
theory

The scaling theory of Anderson localization goes back to 1979 and Abrahams, Anderson,
Licciardello, Ramakrishnan. They made the following hypothesis

• It’s a single parameter scaling theory for the dimensionless conductance g. This
means that the β function d ln(g)/d ln(L) ought to be independent on the running
IR scale (system size) L

• We know the asymptotics: g(L) ∼ σLd−2 for large g and g(L) ∼ e−L/ξ in the Ander-
son insulator with localization length ξ.

• The authors assumed monotonicity of the beta function (which turns out to be in-
correct in some cases - see below).

Then they ended up with their famous picture for the scaling, Fig. 4. We expect

• Stability of the diffusion theory in D = 3. The transition to the insulating state is
expected at g ∼ 1

• Localization of all states for D ≤ 2, where D = 2 is most interesting for the Anderson
transition (critical dimension).

28



Figure 4: Phenomenological one parameter scaling theory of Anderson localization [Abra-
hams et al. PRL 42, p. 673 (1979)].

• The NLSM technique allows to calculate this beta function starting from large g at
or near the critical dimension D = 2.

• We will also consider smaller D and will see that non-trivial phases may appear in
this case as well.

3.3 2D: Renormalization group approach

3.3.1 Generalities on the Renormalization group approach

General motivation for the renormalization group approach

• From an abstract QFT view point:

– QFTs typically contain divergencies (high energy theorists are mostly concerned
about UV divergencies).

– These divergencies need to be regularized (e.g. by a cut-off or dimensional
regularization) and counter terms are introduced in the bare action to cancel
divergencies in the diagrams

– From the high-energy perspective there are three cases

1. Superrenormalizable theories: Only a finite number of diagrams is “superfi-
cially” divergent (in the UV), so that only a finite number off counter terms
is needed.
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2. Renormalizable theories: An infinite number of diagrams is diagrams is
superficially divergent, but at each order in a small parameter (e.g. small
coupling constant or 1/N) only a finite number of counterterms is needed
to cure these divergencies.

3. Non-renormalizable theories: The number of superficially divergent dia-
grams blows up with expansion order, so one would need an infinite number
of counter terms to cure these divergencies.

I will not show this here, but mathematically inclined students might want to
check Zinn-Justin’s book to see the proof or renoramalizability (order by order,
in the above sense) of φ4 theory.

• From a condensed matter view point

– We’re always interested at the physics in the IR, and want to to derive the
effective Hamiltonian/action valid at smallest energies

– To this purpose, we integrate out Quantum/thermal flucations of short dis-
tance/short time modes.

– The RG procedure does this iteratively. One RG step is subdivided into the
following three steps

1. Split fields into slow and fast: For a φ4 theory, this looks like (b > 1)

φ(x) =

∫ Λ

(dp)eipxφ(x) =

∫ Λ/b

(dp)eipxφ(x)︸ ︷︷ ︸
=:φs

+

∫ Λ

Λ/b

(dp)eipxφ(x)︸ ︷︷ ︸
=:φf

, (70)

if the fields have a target manifold which is a group T (x) ∈ G or a coset
space (e.g. the NLσM field Q = T−1ΛT )

T (x) = Tf (x)Ts(x). (71)

2. Obtain the effective action of slow fields by integrating out fast fields. Using
the notation

S[φs + φf ] = S[φs] + S[φf ] + Simt[φs, φf ], (72)

this amounts to

Seff [φs] = S[φs]− ln〈e−Sint[φs,φf ]〉φf . (73)

and analogically for the NLσM case (see Sec. 3.3.2)

3. Rescaling of momenta p → p′ = bp, so that the new theory has the same
cut-off as the original theory. Fields may also be rescaled φ → φ′ = bdφφ,
usually in such a way that the coupling constant of the kinetic term is
not renormalized (of course group and NLσM fields Q can’t be rescaled,
otherwise, they loose their algebraic properties, e.g. Q2 = 1.).
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After one RG step, all coupling constants ga are mapped to ga 7→ g′a({g}, b).
– This procedure is then iteratively repeated and expressed in the form of differ-

ential RG equations.

∗ A sloppy way to get them, is to require Λ/b is infinitesimally less then Λ
and so that we can expand in ln(b)� 1, i.e.

g′a({g}, b) = ga + ln(b)βa({g}). (74)

At this level, the iterative RG procedure is equivalent to the differential
equation

g′a({g}, b)− ga
ln(b)

→ dga
d ln(b)

= βa({g}).
Renoramalization group equation

(75)

∗ A more precise way is to keep ln(b)� 1, in such a way that only the most
divergent diagrams are discriminated and kept (as mentioned, from the QFT
perspective RG is a way to tame divergencies). In this case, however, the
form of the discrete renormalization step has the form Eq. (74) only if the
theory is renormalizable and is equivalent to the resummation of logarithmic
diagrams.

• Comments regarding the solutions of RG equations

– Those g∗a such that βa({ga}) = 0∀a are called fixed points. Here the systems are
self-similar (just as fractals).

– In most continuous phase transitions, the following linearization

βa({g∗ + δg}) = ∂gbβa({g∗})δgb (76)

leads to a non-zero matrix ∂gbβa({g∗}) who’s (left) eigenvalues λα define the

scaling dimension of certain coupling constants with associated operators Ôα at
the phase transition. We distinguish

∗ λα > 0: The flow is directed away from the fixed point (Ôα is a “relevent
operator”).

∗ λα = 0: The flow is unchanged, Ôα is a “marginal operator” and the fixed
point is actually part of a line of fixed points.

∗ λα < 0: The flow is towards the fixed point (“irrelevant operator”)

(in the condensed matter convention, the direction of flow always is towards the
infrared).

– This allows to distinguish different fixed points

∗ All operators are irrelevant: A stable, attractive fixed point, i.e. a stable
phase.
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∗ If one (or more) operators is relevant: repulsive fixed point, i.e. a phase
transition.

– Technically, most RG calculations are performed perturbatively perturbing about
the free fix point ga = 0∀a.

3.3.2 Renormalization group flow of non-linear sigma model in the Wigner
Dyson classes

We have seen, Eq. (64), that the perturbative corrections to conductivity diverge logarith-
mically in 2D and that RG theory is a method to tame these logarithmic divergencies.
Here we apply the strategy to the NLσM of class AI.

Splitting of fast and slow fields. As mentioned above we split T (x) = Tf (x)Ts(x), so that

S[Q] =
σ

32

∫
x

tr [(∂µQf + i[A(x), Qf ])
2], (77)

with A(x) = −iTs∂µT−1
s .

RG step. We have already done the calculation of calculating the effective theory of slow
fields above! We can simply return to Eq. (62) and assume Da

c (x, x) = Da
d(x, x) = D(x, x)

are now all integrals over fast fields, so that

δSeff = −D(x,x)

4

∑
a,b

λa(−1)b=z
∫
x

{
tr [

1± τz
2

σa~A−+
βα

1∓ τz
2

σa~A−+
βα ]

+ tr [
τx ± iτy

2
σa~A−+

βα

τy ∓ iτx
2

σa~A−+
βα ]
}

= −D(x,x)

4

∑
a,b

∫
x

tr [(τbσa)
T (σyτxA−+

βα )(τbσa)(A−+
βα σyτx)]

(1)
= −D(x,x)

∫
x

[σyτxA−+]lk,βα[A−+σyτx]lk,βα

(2)
= −D(x,x)

∫
x

tr [(σyτxA−+)(A−+σyτx)]

= −4D(x,x)

32

∫
x

tr [(∇Qs)
2] (78)

At (1), we used the Fierz-identity of SU(4)∑
ab

[σaτb]ij[σaτb]kl = 4δilδjk (79)
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and at (2)

[σyτxA−+]lk,βα = −[A+−Tσyτx]lk,βα = [σyτxA−+]kl,αβ (80)

Rescaling

We found

S[Qs] =
σ − 4D(x,x)

32

∫
ddxtr [(∂µQs)

2] (81)

The rescaling of momenta p→ p′ = bp (or x→ x′ = x/b) implies a final expression for the
renormalized coupling constant

σ → σ′ = bd−2[σ − 4D(x,x)]. (82)

RG equation

We are most interested in the vicinity of 2 dimensions. In exactly 2D, the integral

D(x,x) =

∫ Λ

Λ/b

d2p

(2π)d
1

p2 + L−2
' 1

2π
ln(b). (83)

A more formal calculation (dimensional regularization and d near 2) leads to essentially
the same result.

Following the above mentioned strategy, this leads to the following one-loop renormaliza-
tion group equation

dσ

d ln(b)
= (d− 2)σ − 2

π
.

RG equation of NLσM in class AI

(84)

Comments:

• At d = 2 + ε there are three fixed points

1. The diffusive metal, σ∗ = ∞, which is the attractive fixed point we were ex-
panding about.

2. In it’s vicinity, a repulsive fixed point σ∗ = 2/(πε) of the Anderson-metal insu-
lator transition

3. An attractive fixed point σ∗ = 0, outside the regime of control, representing the
insulator.

• Note that the bare value of σ ∼ EF τ(EF )(d−2)/2, so that there is a mobility edge E∗

(i.e. an energy below which all states are localized)

E∗ ∼ (σ∗)
2
d . (85)
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• Critical exponents of the Anderson transition are defined as

ξ ∼ (E∗ − E)−ν , localization length exponent (86)

σ ∼ (E − E∗)s, conductivity exponent (87)

with scaling relation s = ν(d − 2). Expansion near the transition yields β′(σ∗) = ε
and thus δσ ∼ (L/`)εδσ0. The correction is large when L ∼ `(δσ0)−1/ε which defines
ξ ∼ (E∗ − EF )−1/ε, i.e. ν = 1/ε. (The numerical value in 3D is ν ∼ 1.57).

• The flow towards strong coupling is typical for compact order parameter manifolds
in 2D and is a manifestation of Mermin-Wagner-theorem. Here, it signals strong
localization, in accordance with Fig. 4.

• One may also estimate the localization length ξloc, which is the length scale at which
the solution to the RG equation σ(L) = σDrude − 2 ln(L/`)/π vanishes:

ξloc ∼ `eπσDrude/2 (88)

Obviously, this scale is exponentially large.

• We didn’t discuss the frequency term, but z is actually not renormalized in 2D.

• We briefly comment on the RG flow in 2D in the other Wigner-Dyson symmetry
classes (without calculation, just reading off Eq. (64))

– In class A, there are no quantum corrections at one loop order, dσ/d ln(L/`) =
O(1/σ)

– In class AII, the equation is dσ/d ln(L/l) = 1/π.

∗ This renormalization group flow appears to violate Mermin Wagner. The
culpit is the Replica limit (for any R ∈ N the beta function is non-negative,
in accordance with the theorem.

∗ The Weak anti-localization stabilizes the diffusive metallic phase σ = ∞.
Since σ = 0 (the Anderson insulator) is also a stable fix point, there must
be a phase transition at some intermediate σ.

3.3.3 Scaling theory of the integer Quantum Hall transition

In this section we discuss a first example of the interplay of localization physics with
topology and study the NLσM describing the states inside a (disorder broadened) Landau
level and theoretically motivating the scaling flow at the QH transtion, see Fig 5.

S =

∫
d2x

σ
(0)
xx

8
tr [(DµQ)2] +

σ
(0)
xy

8
εµνtr [QDµQDνQ]. (89)

Here the superscript (0) indicates the bare (Drude) value)
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Figure 5: The Quantum Hall effect.

• In this case Q ∈ U(2R)
U(R)×U(R)

, note that π2( U(2R)
U(R)×U(R)

) = Z.

• The term proportional to σxy countes the number of instantons. A single instanton
occurs in a single replica, denoted α0, here, and is given by

[Qinst]αβ = δαβδα,α0n̂(x) · (Λx,Λy,Λz) + (1− δα,α0)δαβΛz (90)

and

n̂(x) =
(2λx, 2λy,x2 − λ2)T

λ2 + x2
(91)

is a unit vector containing one Skyrmion of size λ, see Fig. 6.

• Insertion of a single skyrmion leads to an action

S[Qinst] = 2πσ(0)
xx︸ ︷︷ ︸

price from kinetic energy

+2πiσ(0)
xy (92)

• To account for skyrmions, the path integral is evaluated as

Z =
∑
W

ZW ZW =

∫
DT exp[−S[T−1Q

(W )
inst T ]] (93)

where W is the winding number of the instanton. Note that the soft modes T which
smoothly distort the instanton include so called “zero modes”, i.e. transformations
of Qinst which do not cost any extra energy (e.g. the position of the defect in real
and replica space).
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• As above, δ2Z/δA+−
µ δA−+

ν defines the conductivity σµν . Note that σxy is odd under
reflection of B-field, while σxx is even.

• The evaluation of the physical conductivity after incorporating all quantum fluctua-
tions has formally the form

σxx = σ(0)
xx +

∞∑
W=0

cos(2πWσ0
xy)cW (σ(0)

xx ) (94)

σxy = σ(0)
xy +

∞∑
W=0

sin(2πWσ0
xy)c

′
W (σ(0)

xx ), (95)

where the coefficients cW , c
′
W account for all fluctuations in a given topological sector

with W (anti-)skyrmions.

• Pruisken et al. have calculated these fluctuation corrections perturbatively and recast
it in RG language using minimal subtraction scheme. In addition to the usual inte-
gration of fast non-topological modes, a non-standard mode of integration is the size
of the skyrmion: Instantons with skyrmion size λ ∈ (1/Λ, b/Λ) are also integrated
out as fast modes. This leads to

dσxx
d ln(b)

= − 1

2π2σxx
−cσxxe−2πσxx cos(2πσxy) (96a)

dσxy
d ln(b)

= cσxxe
−2πσxx sin(2πσxy) (96b)

with some c > 0. The corresponding RG flow is plotted in Fig. 6, right. The overall
topology of the flow (associated to the name of D. Khmelnitskii) has been confirmed
experimentally.

• For a discussion of subtleties of this procedure, see the book by Altland and Simons,
p.535.

3.3.4 Disordered Dirac fermions I: RG flow and Avoided localization

In the previous section, we saw how a topological term, the θ-term, is responsible for the
transition between two topological distinct bulk insulators (in that case two different QH
states).

Now we will study the surface of a topological insulator and see how Anderson localization
is avoided in this case.

The model which we study falls into class AIII, where the beta function is known to
be exactly zero to all orders in Perturbation theory, see Sec. 2.5, even for non-topological
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Figure 6: Left:A Skyrmion field, Eq. (91). Right: Schematic flow of Eqs. (96).

systems. At the end of this section, we therefore also comment on the impact of th WZNW
term in the other two ‘principle chiral models’ of class DIII (NLSM manifold = orthogonal
group, antilocalization) and CI (NLSM manifold = symplectic group, localizing).

Before studying the RG flow, we first present an alternative way to derive the NLSM and
introduce the technique of non-Abelian Bosonization.

Non-Abelian Bosonization - Generalities We first consider a free fermion problem
with N flavors

L = ψ̄[− E + iη︸ ︷︷ ︸
iεn→E+iη

+v

(
0 px − ipy

px + ipy 0

)
]ψ. (97)

We’re interested in states at E = 0, and moreover set v = 1 for simplicity . Then, this
Lagrangian has a U(N)L × U(N)R symmetry:

ψ =

(
ψ↑
ψ↓

)
→
(
URψ↑
ULψ↓

)
, (98)

ψ̄ =
(
ψ̄↑, ψ̄↓

)
→
(
ψ̄↑U

†
L, ψ̄↓U

†
R

)
(99)

where each of ψ↑ and ψ↓ is an N spinor on its own, and UR, UL are independent, unitary
matrices.

To obtain the corresponding classical Noether currents, we consider space-dependent rota-
tions

L →
√

2ψ̄

(
0 −i∂z − iU †L∂zUL

−i∂z̄ − iU †R∂z̄UR 0

)
ψ. (100)

We use the notation ∂z = 1√
2
[∂x − i∂y] and z = x+iy

2
.
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• Classically, there are two sets of conserved current vectors

jµ,i = ψ̄σµtiψ (101)

j5
µ,i = ψ̄σzσµtiψ = iεµνjν,i (102)

Here ti ∈ u(k) normalizad as tr [ti, tj] = 2δij

• It will not be important for what follows, but the quantum anomaly implies equations
of motion of the kind

∂µjµ,i = 0 (103)

∂µj
5
µ,i =

e

2π
εµνtr [Fµν ] (104)

in the presence of a non-trivial magnetic field.

• Instead of the axial and conserved currents consider the chiral currents

j = ψ↑ ⊗ ψ̄↓ (105)

j̄ = ψ↓ ⊗ ψ̄↑ (106)

with corresponding Noether conservation laws

∂z j̄ = 0 = ∂z̄j. (107)

Note that I use a matrix notation and one may readily extract ji = tr [tij] using U(N)
generators.

• It’s evident that under a U(N)× U(N) transformation

j = ψ↑ψ̄↓ → URjU
†
R (108)

j̄ = ψ↓ψ̄↑ → ULj̄U
†
L (109)

• Now we follow Witten in an educated guess for the bosonized theory. We require

1. The bosonic target manifold should be invariant under U(N)× U(N).

2. Left and right currents should transform correctly in the bosonized theory

3. And fulfill the correct equations of motion (“current algebra” )

We now move to fulfilling these conditions

1. Manifolds with the first property are group manifolds, in our case U(N), where
U → ULUU

−1
R .
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2. The correct transformation behavior is fulfilled by the bosonization dictionary

j = ψ↑ ⊗ ψ̄↓ ↔
1√
8π
U †∂zU (110a)

j̄ = ψ↓ ⊗ ψ̄↑ ↔
1√
8π
U∂z̄U

†, (110b)

ψ↑ ⊗ ψ̄↑ ↔ −ΛU † (110c)

ψ↓ ⊗ ψ̄↓ ↔ ΛU. (110d)

By power counting, it’s clear that Λ is an energy (of the order of the UV
cut-off).

3. To find the action that is consistent with Noether theorem, make the Ansatz

S[U ] =
σ

8π

∫
x

tr [∂µU∂µU
†]− ik

12π

∫
(x,w)∈R2×[0,1]

εµνρtr [Ũ †∂µŨ Ũ
†∂νŨ Ũ

†∂ρŨ ]

(111)
Comments

– Here Ũ(x, w) is defined by Ũ(x, 0) = U and Ũ(x, 1) = 1. The prefactor k
is unknown , but k ∈ Z for topological reasons .

– A priori, σ > 0 is another unknown constant.

– We now derive the equations of motion of currents/conservation laws. We
use the following intermediate result (left as an excercise)

S[UlUr] = S[Ul] + S[Ur] +
1

4π

∫
x

tr [Ur∂µU
†
r (σδµν − ikεµν)U †l ∂νUl]. (112)

The conservation laws follow from slow rotation of the bosonized field U in
the same way as the usual Noether theorem. After a bit of algebra (also
left as an excercise)

U → UL(x)U :(σ + k)∂z(U∂z̄U
†) + (σ − k)∂z̄(U∂zU

†) = 0 (113)

U → UUR(x) :(σ + k)∂z̄(U
†∂zU) + (σ − k)∂z(U

†∂z̄U) = 0 (114)

Consistency with the fermionic conservation laws imposes σ = k.

– What’s left to fix is the value of σ. The simplest short-cut to use U =
eiφt0V , V ∈ SU(N) and compare the action of φ from what’s known from
Abelian bosonization (differently stated: We simply evaluate correlators of
tr [j] ∼ ∂zφ in both fermionic and bosonic language). Then we readily see
that σ = k = 1.

This concludes the “derivation” (better: motivation) of the non-Abelian bosonization rules,
Eq. (110), where fermionic correlators are evaluated w.r.t Eq. (97) and bosonic correlators
are evaluated w.r.t. Eq. (111) at σ = k = 1.
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Derivation of NLσM via non-Abelian Bosonization We now study a localization
problem of class AIII, which is describes the surface of a 3D TI with bulk winding number
k (i.e. with k Dirac nodes on the surface).

L = ψ̄(p−A) · ~σψ, (115)

where ψ is a 2k spinor and we expand

A = Aiti, ti ∈ u(k). (116)

The random U(N) vector potential is Gaussian white noise distributed

〈Aµi (x)Aνj (x
′)〉dis = λiδijδµνδ(x− x′), (117)

λ0 = λA and λi 6=0 = λ describe the U(1) and SU(N) disorder strength.

We use the bosonic representation of this model following the previously derived non-
Abelian Bosonziation. As a first step, we extend to a replicated theory, i.e. ψ is now a
2kR spinor.

The gauged WZNW is thus (for non-topological gauge field configurations)

S[U,A] = S[U ]

+
1

4π

∫
x

(δµν − iεµν){itr [AµU
†∂νU ] + itr [U∂µU

†Aν ]︸ ︷︷ ︸
→S1

− 1

2
tr [[U,Aµ][U †, Aν ]︸ ︷︷ ︸

→S2

]} (118)

Note that U ∈ U(kR), but Aµ are U(k) vector potentials (Aµ = Aµ,iti ⊗ 1replicas).

We start by studing the most relevant term S2 with two gauge fields. While formally, one
should take full field integral, it is sufficient to consider the quadratic term to leading order
to see that it generates a mass for some of the NLσM modes.

〈S2〉 = − 1

4π

∫
x

λiδ(0)tr [[U, ti][U
†, ti]]

U=eiW' λ

4π

∫
x

δ(0)
∑

ti∈su(k)

tr [(i[W, ti])
2] ≥ 0. (119)

Here, δ(0) is the delta function evaluated at coincident points using an appropriate UV
regularization. We used the exponential map to parametrize the unitary group. Note that
W, ti are both hermitian, and thus i[W, ti] is also hermitian. By consequence (i[W, ti])

2 is
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a positive definite matrix. By consequence 〈S2〉 is minimized by those W which commute
with all ti ∈ su(k), i.e. when W is only a matrix in replicas.

We therefore have to restricting ourselves to U ∈ U(R) and we find that the only contri-
bution to S1 stems from Aµ,i = 0. We use that

S1|A0 =
1

2π

∫
x

Aµεµνtr [t0(U †∂µU)] (120)

and thus

δSeff = − ln〈e−S1〉

=
λA
8π2

∫
x

(tr [t0U
†∂µU ])2

= −
∫
x

c

8π
(tr [U †∂µU ])2 (121)

Here, tr goes over the kR dimensional space and t0 =
√

2/k1. In Eq. (122) we switched
to the notation where tr only goes over R dimensional space, hence the result for c =
(λAk

2/π)× (2/k), where the last factor stems from the normalization of t0 .

The effective action after averaging has thus the form

S[U ] =

∫
x

σ

8π
tr [∂µU∂µU

†]− c

8π
(tr [U †∂µU ])2 − ik

12π

∫
(x,w)

εµνρtr [Ũ †∂µŨ Ũ
†∂νŨ Ũ

†∂ρŨ ]

(122)
where σ = k at the UV and c = 2λAk/π. The term propotional to c is specific to chiral
classes but not to Dirac fermions.

Renormalization group of NLσM in class AIII with WZW term We now consider
Eq. (122) at arbitrary values of σ, c ∈ R and k ∈ Z and calculate the RG equations for
σ � 1. We first split

U = eiφt0V. (123)

Note that V ∈ SU(R), t0 =
√

2/R1R (We have switched the notation from ti being
generators of SU(k) to ti being generators of SU(R)). Then

S[φ, V ] =

∫
x

σ +Rc

4π
(∂µφ)2 + S[V ],

S[V ] =

∫
x

σ

8π
tr [∂µV ∂µV

†]− ik

12π

∫
(x,w)

εµνρtr [Ṽ †∂µṼ Ṽ
†∂νṼ Ṽ

†∂ρṼ ] (124)
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We readily see that σ +Rc is not renormalized at any R (φ is a Gaussian field), and thus

dσ

d ln(b)
= −R dc

d ln(b)

∣∣∣∣
R→0

= 0, (125)

where the last equality is valid under the (correct) assumption that the renormalization of
c is not singular in the replica limit.

Therefore, in the chiral classes, conductivity is not renormalized for symmetry reasons (i.e.
independently of the topology encoded in the level k of the WZW term).

We will now find the renormalization group flow of S[V ].

Splitting the fields As a first step, we split the fields V = VsVf into slow and fast compo-
nents. We exploit Eq. (112)

S[VsVf ] = S[Vs] + S[Vf ] + Sint[Vs, Vf ], (126)

where

Sint[Vs, Vf ] =
1

4π

∫
x

tr [ V †f ∂µVf︸ ︷︷ ︸
'[W,∂µW ]/2

(σδµν − ikεµν)V †s ∂νVs︸ ︷︷ ︸
≡Asµ

]. (127)

Note that in the expansion of the fast fields in generators Vf = eiW , the leading term is
quadratic (the linear term in W would imply an integral

∫
p
W (p)Asµ(p)pµ, but slow fields

and the fast field W (p) have no common support in momentum space).

It is convenient to expand the fast fields in normalized generators of SU(R), W = φata,
tr [tatb] = 2δab, so that fast propators are

〈φa(p)φb(p
′)〉 =

δab2π

σp2
(2π)2δ(p + p′). (128)

RG step. Then we find

δSs = −1

2
〈S2

int〉f

=
1

32π2

∫
p,q,p′,q′

tr [Asµ(q)tatb]tr [Asµ′(q
′)ta

′
tb
′
]pµp

′
µ′〈φa(−p− q)φb(p)φa

′
(−p′ − q′)φb

′
(p′)〉

= . . . (129)

=
1

8πσ2
ln(b)R

∫
x

tr [(Asµ)2] (130)

the ellipsis denotes some straightforward but tedious algebra (see p. 460 of Altland and
Simons or ask me for some handwritten notes).
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The crucial ingredient of topology enters in

tr [(Asµ)2] = tr [((σδµν − ikεµν)V †s ∂νVs)2] = −(σ2 − k2)tr [∂µV
†
s ∂µVs]. (131)

From simple differentiation we see that we have thus derived the RG equation for the
SU(R)k WZNW model in class AIII. We present it along with the RG equations for the
other two WZNW models

dσ

d ln(b)
= −σ

2 − k2

σ2
R

R→0−→ 0 SU(R)k class AIII (132)

dσ

d ln(b)
= −σ

2 − k2

σ2
(R− 2)

R→0−→ 2
σ2 − k2

σ2
O(R)k class DIII (133)

dσ

d ln(b)
= −σ

2 − k2

σ2
(R + 1)

R→0−→ −σ
2 − k2

σ2
Sp(2R)k class CI (134)

(135)

Recall that for class AIII there is one more coupling constant, which has a flow

dc

d ln(b)
= − 1

R

dσ

d ln(b)

∣∣∣∣
R→0

=
σ2 − k2

σ2
. (136)

Comments

• The RG flow of the non-topological system (k = 0) is critical, antilocalizing and
localizing in classes AIII, DIII and CI respectively.

• The RG flow of the topological system is fundamentally different:

– At finite k and finite R (as well as the flow for class CI in the replica limit)
it is towards a critical fix point at σ = k. This encodes the protection of 3D
TI surface states. The coefficient σ2 − k2 appears in all loop orders, so it will
always protect, see Fig. 3.3.4.

– For the model of class AIII presented in Eq. (115), we found a starting value
σ = k using non-Abelian bosonization. Thus we reside at the critical point and
c doesn’t flow either (this model displays as line of critical points parametrized
by λA).

• The 1-loop RG equations of class AIII are known to be exact (i.e. all higher loop
orders vanish. Topological vortex contributions can appear however).
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Figure 7: RG flow of WZNW models (adapted from Witten, Commun. Math. Phys. 92,
455 (1984).

3.3.5 Disordered Dirac fermions II: Tractable models of multifractality

So far we have seen

• Anderson Metal-Insulator-transition in standard symmetry classes

• The impact of a θ term leading to bulk topological phases and phase transitions

• The impact of the WZW term which prevents localization.

These calculations substantiate the picture of 1 respectively 2 parameter scaling at Ander-
son transitions.

Now we will see that actually, at Anderson criticality, there are not 1 or 2 operators with
non-trivial scaling dimension, but infinitely many.

Dirac electron with random vector potential - explicit structure of wave func-
tion We consider the k = 1 version of Eq. (115), i.e. the surface state of an 3D topological
insulator with bulk winding k = 1 (i.e. with one Dirac electron on its surface.

The Hamiltonian is
H = v(−i∂µ + Aµ)σµ (137)

and set v = 1 and
〈Aµ(x)Aν(x

′)〉dis. = δµνλAδ(x− x′). (138)
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Since {H, σz} = 0, the model has chiral symmetry and no other symmetries and belongs
to class AIII. It describes the surface state of some exotic topological insulator.

We use the notation Aµ = εµν∂νφ+ ∂µχ, gauge away χ realize that Eq. (138) implies

〈φ(x)φ(x′)〉dis. = δµν
λA
2π

ln(L/|x− x′|) (139)

and obtain zero modes
ψ± = N±[φ]e−φ(x)σz ê± (140)

where ê+ = (1, 0), ê− = (0, 1). Clearly, N±[φ]2 =
∫
d2xe∓2φ(x).

Are these exact solutions localized or insulating? The answer is neither nor.

Generalities on Multifractality As a measure of localization, we define the inverse
participation ratio

Pq =

∫
ddx|ψ(x)|2q (141)

and study its scaling with system size

Pq ∼ L−τq (142)

Note that per definition τ0 = −d and τ1 = 0 (normalization.) We readily distinguish
different cases

• τq = 0∀q > 0: Insulator

• τq = d(q − 1) : Metal

• Intermediate cases: Multifractal

Multifractality spectrum of Dirac fermions in random vector potential In the
present case

Pq = 〈
∫
d2xe∓2qφ

[
∫
d2xe∓2φ]q

〉dis. (143)

The general calculation is a bit cumbersome, but for weak disorder, λA < 2π, it turns out
that it is sufficient to average numerator and denominator separately

Pq '
〈
∫
d2xe∓2qφ〉dis.

[〈
∫
d2xe∓2φ〉dis.]q

(144)
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We use

〈
∫
d2xe∓2qφ〉dis. ∼ (L/a)2〈e∓2qφ〉dis. ∼ (L/a)2−(2q)2λA/(4π) (145)

so that in total

Pq ∼
(L/a)2−q2λA/π

[(L/a)2−λA/π]q
∼ (L/a)−(q−1)(2−λAq/π) (146)

Notes

• We see that τq = (q−1)(2−λAq/π) is non-trivial, so the wave function is multifractal.

• Note that the scaling dimension continuously changes as a function of λA, i.e. we
have a line of fixed points

• Recall that this is valid only for λA < 2π, at larger λA the spectrum is frozen (i.e.
τq ≡ 0 for all q > qc and 0 < qc < 1.)
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Part II

Many-Body physics in the presence
of disorder

In this part we will consider many-body problems in the presence of disorder.

4 Disordered electronic problems with interactions

(This section is largely copy-pasted from an introductory chapter in my PhD thesis.)

4.1 Motivation

We have seen

• Single particle phenomenon of Anderson localization

• Single particle (eigenstate) quantum phase transition and criticality

• precursor of strong Anderson localization: Weak localization corrections.

We have also discussed that electron-electon interactions cut the weak localization correc-
tions (or the RG-flow) and serve as an IR cut-off, see discussion around Eq. (69).

However, there are additional effects of interactions

• Additional localizing effects to conductivity (Altshuler-Aronov corrections, δσ =
− 1
π

ln(1/Tτ), see Fig.8)

• Zero bias anomaly in the tunneling density of states

• Antagonistic interplay Superconductivity vs. Anderson localization (Anderson-theorem)
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Figure 8: Altshuler Aronov corrections to the conductivity: The 5 diagrams associated to
this correction can be obtained from the leading order Free energy by diagramatic insertion
of conductivity vertices (i.e. differentiation)

4.2 Clean and disordered Fermi liquid

The main statement of Landau’s Fermi liquid theory [Nozieres and Luttinger(1962), Abrikosov et al.(1963)Abrikosov, Gorkov, and Dzyaloshinskij,
Landau et al.(1980)Landau, Lifshits, and Pitaevskii] is that, in the absence of spontaneous
symmetry breaking,2 the low-energy3 excitations of a strongly correlated fermionic system
are fermions (quasiparticles) with the same quantum number as the free particles. Their
decay rate is small compared to the Fermi energy.

Landau’s phenomenological theory can be put on firm ground using field theoretic tech-
niques. The exact electronic Green’s function (i.e. two point correlator) can be shown to
contain a singular part (quasiparticle pole) with weight 0 < a < 1 and an additional regular
contribution [Luttinger(1961)]. In the entire lecture notes I reabsorb a into a redefinition
of fermionic fields and scattering amplitude.

Another particularly important quantity in the QFT of strongly interacting fermions are
the four point correlators. These implicitly define the full interaction amplitudes. The
latter are subdivided in different channels of small energy-momentum transfer according
to their tensor structure in spin space, see Fig. 9. They include, among others, resonant
particle-hole (particle-particle) bubbles, a singular contribution when the two fermionic
propagators have close d+1 momentum. In order to handle the divergence, the scattering
amplitude I is defined (in each channel): It contains only the one bubble irreducible dia-
grams of Γ and is thus regular. By definition its resummation with bubbles equals the full
Γ (for simplicity any spin structure is omitted here).

2The spectrum of the interacting system is adiabatically connected to the free problem.
3Low energy as compared to the Fermi energy.
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Figure 9: Interaction channels of small energy momentum transfer (capital letters P,K)
in the Fermi Liquid theory. Classification according to the tensor structure in spin-space
(index si). Upper left: Exemplary contribution to the one Coulomb-line reducible small
angle scattering amplitude. Lower left: Exemplary contribution to the one-Coulomb-line
irreducible small-angle scattering amplitude. Upper right: Exemplary contribution to the
large-angle scattering amplitude. Lower right: Exemplary contribution to the scattering
amplitude in the Cooper channel.

= + +.. .

The bubble of a particle and a hole (or particle) of similar d+1 momenta has a singular
and a regular contribution

Rn,p (ωm,q) ≡ G (εni ,pi)G (εni + ωm,pi + q) = −β vF p̂ · q
vF p̂ · q− iωn

δP + reg. (147)

at vanishing (ωm,q). (δP constrains the fast energy-momentum P on the Fermi surface.)

From the above expressions it becomes evident that the ω-limit of the scattering amplitude4

Γω = lim
ω→0

(
lim
q→0

Γ (ω,q)

)
(148)

4The limiting procedure of Matsubara frequencies involves analytic continuation and is explained in
Ref. [Nozieres and Luttinger(1962)].
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is regular at vanishing (ωm,q) and the dependence of Γp̂,p̂′ (ωm,q) on the transferred d+ 1
momentum is governed by the multiple resummation

Γp̂,p̂′ (ωm,q) = Γωp̂,p̂′ +

∫
p̂i

Γωp̂,p̂i
−vF p̂i · q

vF p̂i · q− iωm
Γωp̂i,p̂′ + . . . . (149)

It can be shown that Γω = F where F are the phenomenological Fermi liquid interaction
parameters.

As will be explained below, for the purpose of disordered systems it is more useful to
extract the static limit

Γq = lim
q→0

(
lim
ω→0

Γ (ω,q)
)

(150)

of Γ (ω,q) (i.e. F summed up with retarded-retarded/advanced-advanced bubbles). Using
this quantity the full amplitude is given by

Γp̂,p̂′ (ωm,q) = Γqp̂,p̂′ +

∫
p̂i

Γqp̂,p̂i
−iωm

vF p̂i · q− iωm
Γqp̂i,p̂′ + . . . . (151)

All presented formulas apply to the short range interactions Γ1, Γ2 and Γc. The long-range
interaction Γ0 requires special treatment. It needs to be RPA screened by the full Fermi
liquid polarization operator Π (ωm,q) which involves short range interactions, see Fig. 11.

Upon inclusion of sufficiently weak disorder (in the sense kf` � 1) the q-limit quantities
(e.g. Γq) remain unchanged, because they are determined by scales much shorter than
the mean free path. On the contrary, the dynamic part of scattering amplitudes, i.e. the
retarded-advanced particle-hole/particle-particle bubbles, has to be replaced by its diffusive
counterpart [Finkelstein(1990), Finkel’stein(2010)]:

ωn
ωn + ivF p̂ · q

→ ωn
ωn +Dq2

(152)

This replacement is best understood diagrammatically: All channels Γ (ω,q) are deter-
mined by infinite resummation of Γq with retarded-advanced particle-hole (particle-particle)
bubbles. In the disordered case the latter become Diffusons (Cooperons), see Fig. 10 for
the exemplary case of Γ0.

Another important consequence of disorder is to gap out all harmonics of the particle-hole
bubbles except the zeroth harmonic (broken rotational symmetry). Therefore, the higher
harmonics of Γp̂1,p̂2 are not coupled to the long-range diffusive modes and I henceforth
denote Γ = 〈Γp̂1,p̂2〉Fermi surface.

4.3 Non-linear sigma model with interactions

On the basis of the disordered Fermi liquid, the diffusive NLSM of interacting electrons can
be derived [A.M.Finkel’stein(1983), A.M.Finkel’stein(1984)]. As before, the QFT can be
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Γ0 Γ0 Γ0 = Γ0,q ωn
ωn+Dq2

Γ0,q ωn
ωn+Dq2

Γ0,q

Figure 10: A diagram contributing in the resummation of Γ0 in the diffusive limit. The
retarded-advanced sections become diffusons for energies below 1/τ .

Figure 11: The long range part of the Coulomb interaction has to be screened by means
of the full polarization operator and vertex corrections have to be included.

obtained by functional integration and gradient expansion, again it is constructed on the
saddle point manifold of the free problem. The interaction terms then formally correspond
to particular mass terms in the action:

S = Sσ + S
(ρ)
int + S

(σ)
int + S

(c)
int, (153a)

with

Sσ =
σ

32

∫
x

tr
[
(∇Q)2

]
− 4πTz

∫
x

tr ηQ, (153b)

S
(ρ)
int =

πT

4
Γρ
∑
α,n

∑
r=0,3

∫
x

tr [Iαn tr0Q] tr
[
Iα−ntr0Q

]
, (153c)

S
(σ)
int =

πT

4
Γt
∑
α,n

∑
r=0,3

∑
j=1,2,3

∫
x

tr [Iαn trjQ] tr
[
Iα−ntrjQ

]
, (153d)

S
(c)
int =

πT

2
Γc
∑
α,n

∑
r=0,3

(−)r
∫
x

tr [Iαn tr0QI
α
n tr0Q] . (153e)

In this case, where both time reversal and spin-rotational invariance are assumed (non-
interacting class AI), the Q matrices are symplectic, traceless and involutive and have non-
trivial structure in replica, Matsubara, spin and Nambu spaces. Following Ref. [Burmistrov et al.(2012)Burmistrov, Gornyi, and Mirlin]
I here use the convention trj = τr⊗σj where τr = (1τ , ~τ) are the identity and the Pauli ma-
trices in Nambu space, while σj = (1σ, ~σ) are those in spin space. The following matrices,
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Figure 12: In order to ensure gauge invariance w.r.t. rotations which are local in time
(electrostatic gauge invariance = Coulomb interactions), a two cut-off scheme can be used
[Pruisken and Baranov(1995)]: Q and T matrices are only NM×NM , while the space where
gauge transformations act (e.g. where gauge potetials live) is N ′M ×N ′M with N ′M � NM

(see the matrix denoted P.

which are trivial in Nambu and spin spaces, occur:

Λαβ
nm = sgn (n) δαβδnm,

ηαβnm = nδαβδnm, (154)(
Iα0
n0

)αβ
nm

= δα0αδα0βδn−m,n0 .

The coupling constants of the NLSM are the dimensionless conductivity σ, the q−limits
of interaction amplitudes in density (singlet), triplet and Cooper channel

Γρ = −πν
4

(
2Γ0,q + 2Γ1,q − Γ2,q

)
, (155a)

Γt =
πν

4
Γ2,q, (155b)

Γc =
πν

4
Γc,q, (155c)

and the prefactor z of the frequency term, which is related to the renormalization of
specific heat. Note that it does not flow in the non-interacting case and keeps the bare
value z(0) = πν/4. In the presence of long range Coulomb interaction (Γ0 6= 0) the
NLSM is “F -invariant” [Pruisken et al.(1999)Pruisken, Baranov, and Skoric]. Essentially
this means electrostatic gauge invariance (i.e. invariance under time dependent but space
independent phase rotations) and fixes z + Γρ = 0. To practically incorporate such gauge
transformations, a two cut-off scheme may be imposed, see Fig. 12.

The relationship z + Γρ = 0 is readily clear in the limit of weak interactions, where RPA

works and URPA(q) = U(q)/[1 + U(q)ν]
q→0→ 1/(2ν), such that Γ0,q = 1/2 [recall that ν is

the DOS per spin].

The one loop RG equations are [Finkelstein(1990), Belitz and Kirkpatrick(1994), Burmistrov et al.(2012)Burmistrov, Gornyi, and Mirlin,
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Dell’Anna(2013)]

1

t

dt

d ln(b)
= t [1 + f(γρ) + 3f(γt)− γc] , (156a)

dγρ
d ln(b)

= − t
2

(1 + γρ) (γρ + 3γt + 2γc) , (156b)

dγt
d ln(b)

= − t
2

(1 + γt) (γρ − γt − 2γc (1 + 2γt)) , (156c)

dγc
d ln(b)

= − t
2

[(1 + γc) (γρ − 3γt) + 6γc (γt − ln (1 + γt))]− 2γ2
c . (156d)

d ln(z)

d ln(b)
=

t

2
(γs + 3γt + 2γc) (156e)

(The running scale is y = lnL/l.) It is a necessary consequence of dimensional analysis,
that the RG equations can be written in terms of reduced coupling constants γi = Γi

z

(i = ρ, t, c). The function

f(x) = 1− 1 + x

x
ln(1 + x) ∼

{
1, as x→ −1,
−x

2
, as x→ 0,

(157)

was introduced. These RG equations are perturbative in t = 2/(πσ) and γc but exact in
γρ and γt. I neglected terms beyond leading order in the small parameters t, tγc on the
RHS of Eqs. (156).

Eqs. (156) contain the WL effect [first term “1” in the square bracket of Eq. (156a)], which
is also present in non-interacting systems and the Cooper instability, last term “−2γ2

c”
in Eq. (156d) which is also present in clean systems [Shankar(1994)]. All other terms
stem from the interplay of disorder and interactions, in particular the second term “f(γρ)”
in the square bracket of Eq. (156a) reproduces the AA effect. Note the preservation of
F -invariance at γρ = −1.

In the case of a system with strong spin-orbit coupling, i.e. class AII (for example for
3D topological insulator surface states) the following modifications to Eqs. (156) occur.
First, one should replace the Weak localization by the WAL effect, i.e. “1” in the square
bracket of Eq. (156a) by “−1/2”. Second, the triplet channel is gapped out and γt should
be removed from all equations.

In the following, I would like to briefly expose some outstanding scientific questions which
can be solved by means of the interacting NLSM.

53



Figure 13: Left: Temperature dependent resistivity for various carrier densities
[Kravchenko et al.(1994)Kravchenko, Kravchenko, Furneaux, Pudalov, and D’Iorio]. Note
the non-monotonic curve below the dotted separatrix. Right: 2 parameter scaling proposed
by Punnoose and Finkelstein (Eqs. (156) in the limit of large valley number nvalleyt → t,
nvalleyγt → Θ), so that the Stoner instability at finite T is switched off artificially)

4.4 Metal-insulator transition

In contrast to the expectation founded on the scaling theory (Sec. ??), Kravchenko et al.
[Kravchenko et al.(1994)Kravchenko, Kravchenko, Furneaux, Pudalov, and D’Iorio] exper-
imentally discovered a Metal Insulator Transition in the 2D electrong gas created in Silicon
field effect transistors (see Fig. 13). The effect crucially depends on the (relatively small)
carrier concentration5 n ∼ 1011cm−2 while the sensitivity to an in-plane magnetic field
hints to the importance of the electronic spin. These curious findings were subsequently
theoretically explained by Punnoose and Finkelstein [Punnoose and Finkel’stein(2005)] in
an analysis based on Eqs. (156) for the case of Coulomb interaction γρ = −1 and Cooper
repulsion γc > 0 (then γc →

√
t ≈ 0 very quickly under RG).

According to the RG-equations, the resistance initially increases at small γt (insulating
behavior due to Altshuler-Aronov and Weak localization effects). However, γt > 0 increases
itself under RG (an effect missed in perturbation theory) and eventually the antilocalizing
“3f(γt)”-term in Eq. (156b) dominates. This leads to non-monotonic (and eventually
metallic) resistivity curves as in Fig. 13) and proves the presence of the delocalized phase.
On the other hand at sufficiently strong disorder the system has to be insulating (Anderson
localization) and therefore a Metal Insulator Transition in between of the two phases has
to exist.

5Recall, that the interaction strength (determined by the dimensionless density parameter rs) is strong
for dilute and weak for dense concentrations respectively.
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The above theory has two important drawbacks: First, as usual, being perturbative in t
it can not treat the region of the actual phase transition at the order of t ∼ 1. Second,
and more severely, the above RG-equations imply γt → ∞ (corresponding to strong spin
correlations) at some finite temperature and the theory breaks down. A way out of this
dilemma is provided by a two-loop calculation combined with expansion in large valley
number nV � 1 [Punnoose and Finkel’stein(2005)].

4.5 Superconducting transition in amorphous films

Next, I would like to review the application of the interacting NLSM to the superconducting
transition in disordered materials (I thus consider γc < 0 in this section). Before doing
so, it is beneficial to place the NLSM treatment in the context of various different theories
concerning this problem.

4.5.1 A quick review

Superconductivity, i.e., the phenomenon of frictionless transport and perfect diamagnetism,
is a consequence of long-ranged correlations of the complex order parameter ∆(x) in a
theory of charged particles:

〈∆(x)∆(0)〉 x→∞∼
{
e−x/ξ exponential decay in the normal state (ξ is the correlation length),
〈∆〉2 constant in the superconducting state.

(158)
In two spatial dimensions at finite temperature6 true long-range order is not possible in
view of the Mermin-Wagner theorem. In this case, one resorts to the following weaker
definition:

〈∆(x)∆(0)〉 x→∞∼
{
e−x/ξ exponential decay in the normal state,
1/xη algebraic decay (0 < η < 1) in the superconducting state.

(159)
Typically, the following two sufficient conditions are fulfilled in a superconductor:

1. The modulus of the expectation value |〈∆(x)〉| is non-vanishing and (nearly) homo-
geneous.

2. Strong phase fluctuations of φ = arg (〈∆(x)〉) are suppressed due to sufficiently large
phase rigidity.

As a consequence of these conditions, two different mechanisms driving the transition be-
tween the superconducting and the normal state are often distinguished [Gantmakher and Dolgopolov(2010)]:

6... or in one spatial dimension at zero temperature...
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1. The expectation value 〈∆(x)〉 vanishes across the transition.

2. The expectation value 〈∆(x)〉 6= 0 is locally finite, but the phase rigidity vanishes
across the transition.

The first of these two mechanisms is sometimes referred to as “fermionic” scenario. It
includes the Bardeen-Cooper-Schrieffer theory and related theories, in particular also the
NLSM treatment. In contrast, in the second “bosonic” mechanism, the phase fluctuations
of preformed Cooper pairs drive the transition, typically the fermionic spectrum displays
a pseudogap even in the normal state.

A particularly important representative of bosonic theories is the Berezinskii Kosterlitz
Thouless theory. In the following I will return to the fermionic mechanism and the review
of RG in the interacting, diffusive NLSM.

4.5.2 Suppression of Tc in the presence of Coulomb interaction

The transition temperature Tc of superconductivity corresponds to the running scale yc
at which the Cooper channel coupling constant γc diverges. Here, I focus on the case of
Coulomb interaction (γρ = −1) and negligible triplet channel γt ≈ 0 [Finkel’stein(1987),
Finkelstein(1990), Finkel’stein(1994)]. When Tc does not differ too much from the clean
mean field temperature TBCS it is justified to solve Eq. (156d) at given fixed t. The solution

γc(y) =
t

8
+

√
t
4

+
(
t
8

)2

tanh

[√
t
4

+
(
t
8

)2
2(y − yc)

] (160)

has to obey the boundary condition γc(0) ≡ γ
(0)
c = 1

lnTBCSτ
leading to

Tc
TBCS

= e
− 1

γ
(0)
c

1 +
√
t/2

γ
(0)
c −t/8

1−
√
t/2

γ
(0)
c −t/8


1√
t

(161)

and thus to suppression of Tc. This formula is in nice agreement with experimental data
[Finkel’stein(1987)].

4.5.3 Enhancement of Tc in the presence of short-range interaction

Equally, it is very instructive to consider the limit of short-range interaction and strong
disorder for Eqs. (156) [Burmistrov et al.(2012)Burmistrov, Gornyi, and Mirlin]. Then
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Figure 14: RG flow in the limit when γρ = −1. Taken from Burmistrov et al. PHYSICAL
REVIEW B 92, 014506 (2015).
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|γ(0)
i | ≡ γi(0) � t(0) ≡ t(0) � 1 at the UV scale and all interaction corrections to the

resistance can be neglected. Similarly, Eqs. (156b)-(156d) can be linearized keeping as the
only non-linearity the clean term −2γc (Cooper instability). It is smaller than the linear
terms, and therefore omitted in the first part of a two-step RG. In this first step the system
quickly (at RG scale y ∼ 1) adjusts to −γρ = γt = γc. In the subsequent second RG step,
these couplings suffice

dγc
dy

= 2tγc − 2γ2
c/3. (162)

Now there is a trade-off: when γ
(0)
i � (t(0))2 ∀i = s, t, c the system flows to an insulator

before any instability can occur. Contrary, if (t(0))2, |γs,t| � |γc| � t(0) the instability
occurs before localization. Again the scale of divergence dictates the transition temperature

Tc
TBCS

∼ e
− 1

γ
(0)
c e

− 2

t(0)

(
1− t(0)

t(yc)

)
. (163)

Note that, because of the condition −γ(0)
c � t(0) the first exponential dominates and leads

to enhancement for Tc. The physical mechanism behind this phenomenon is wavefunction
multifractality, which leads to an enhancement of matrix elements of interaction.
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Part III

Quantum Chaos - single particle vs
many particle

5 Motivation - Random matrix theory and finite sam-

ples of diffusive metals

Consider a diffusive piece of metal with size larger than mean free path but smaller than
the localization length ` < L < ξ. The kinetic term in the NLσM, Eq. (31), leads to a
quantization of modes in the propagator (q2 − iω/D)−1, with q = 2πn/L, n ∈ Zd. At
energies below the Thouless energy, 1/τTh = D/L2, all modes except n = 0 are gapped.

We thus found a universal action, independent of system geometry and/or microscopic
details such as scattering length

S = i
ω

2
tr [ΛQ] (164)

There is only one reference energy left, ∆/π = Ldν, which is the inverse mean level spacing
and used as the fundamental unit of energy.

For simplicity, we consider class A, in which Q = T−1ΛT ∈ U(2R)/[U(R)×U(R)] and will
determine the statistics of eigenvalues, as evidenced from level correlations

R2(ω) = ∆2〈ρ(ε+ ω/2)ρ(ε− ω/2)〉dis − 1, (165)

where ρ(ε) = (1/π)Im tr [GA(ε)] and tr runs over all internal quantum numbers. We can
obtain this from the replica partition function as

R2(ω) =
1

2

(
−Re

[
lim
R→0

1

R2

∂2

∂ω2
Z(ω)

]
− 1

)
. (166)

We derive the partition sum in the large ω limit .

• First, we determine the saddle point equation

[Λ, Q] = 0, (167)

which is solved by all block diagonal matrices Q = diag(QR, QA).
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• Solutions can actually be categorized in different sectors

– The sector with minimal (absolute value) of the action is given by

Q0 = Λ = (. . . 1, 1, 1︸ ︷︷ ︸
retarded

,−1,−1,−1, . . .︸ ︷︷ ︸
advanced

) (168)

– The second lowest sector (in terms of absolute value of the action) is given by

Q1 = (. . . 1, 1,−1︸ ︷︷ ︸
retarded

, 1,−1,−1, . . .︸ ︷︷ ︸
advanced

) (169)

and smooth rotations thereof. This is a replica symmetry breaking solution and
a saddle (not a minimum) of the iS[Q].

– However we drop configurations with more than 1 anticausal set of eigenvalues,
e.g.,

Q2 = (. . . 1,−1,−1︸ ︷︷ ︸
retarded

, 1, 1,−1, . . .︸ ︷︷ ︸
advanced

) (170)

as their contribution to the only observable we’re considering vanishes in the
replica limit.

• The only contributions we keep are thus

Z(ω) = Z0(ω) + Z1(ω) (171)

– Z0(ω): We may expand about the trivial fix point, as in Eq. (37), using T = eW/2

Q ' Λ + ΛW + ΛW 2/2,W =

(
0 w
−w† 0

)
(172)

, where in class A w is an arbitrary complex R × R matrix. The action near
this saddle point is

S0[w] = iωR− iωtr [ww†]. (173)

Note that there are 2R2 real massive modes, i.e.

Z0(ω) = (iπ/ω)R
2

e−iωR (174)

– Z1(ω): Fluctuations about the non-trivial solution imply

S1 = i
ω

2
tr [ΛT−1Q1T ]

= i
ω

2
tr [Q1Λ[1 +W 2/2]] (175)

= iω(R− 2)− iωtr [Q1Λ

(
ww† 0

0 w†w

)
] (176)

60



Note that for the non-trivial saddle point, there are zero modes which are mass-
less and correspond to all possible orientation of placing the causality defying
−1 into the retarder sector, and span the manifold

U(R)

U(1)× U(R− 1)
= CPR−1, (177)

in each of retarded and advanced sector. The dimension of this space is 2 ×
(2R−2) , so there are 2R2−2(2R−2) = 2[(R−1)2 +1] massive modes, however
2(R − 1)2 of them have a propagator 1/(−iω) and two 1/(iω). The massless
modes have to be taken into account exactly (not only on the Gaussian level)
and lead to a prefactor

V ol

(
U(R)

U(1)× U(R− 1)

)2

=

(
(2π)R−1

Γ(R)

)2

. (178)

Thus the contribution to the partition sum from the first non-trivial sector is

Z1(ω) = e−iω(R−2)

(
(2π)R−1

Γ(R)

)2

(iπ/ω)(R−1)2(−iπ/ω) (179)

– At any finite R, ZR−1(ω) = Z1(−ω), so we seem to have to keep this sector.
However, this is wrong, instead we drop all contributions with with 2 ≤ p
anticausal entries in the saddle point solution, see Yurkvich and Lerner, PRB
60 3958 (1999),

– This leads to

Z(ω)
R→0' e−iωR

ωR2 +R2 eiω(2−R)

4ω(R−1)2+1
, (180)

where the first term stems from Z0 and the second from Z1. From this and
Eq. (166) we get

R2(ω) = −sin2(ω)

ω2
. (181)

Comments

• The final result, Eq. (181) was calculated at large ω � 1, but is actually exact.

• There are two main features, see Fig. 15:

– First, note that levels repel each other: If there is a level at ε, it’s unlikely
to have a level at ε + ω (this can be understood with a simple Landau-Zener
picture) .

– Second, note the oscillations with frequency ω ∼ 1/∆, which represents the
discreteness of levels in each configuration.
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– Technically, note that the result is highly non-perturbative (it stems from non-
trivial saddle point configurations).

• The result of these level correlations is typical for random matrix theory, i.e. for the
level statistics of

HRMT=SY K2 =
1√
N
c†atabcb − µc†aca, (182)

with random intersite hopping 〈tab〉dis. = 0; 〈tabt∗ab〉dis. = t2 ∼ 1/∆2

• Note that in this case, the SCBA saddle point equation (14a), is

G(iε) = [iε+ µ− Σ(iε)] (183a)

Σ(τ) = t2G(τ), (183b)

We will find that the self energy dominates over iε, so that effectively

Σ = t2(µ− Σ)−1 ⇒ Σ =
µ−

√
µ2 − 4t2

2
(184)

which indeed is stronger than iε at small ε and leads to a semicircular density of
states

ν(ε) =

√
1− ε2/(2t)2

πt
(185)

• There are generalizations of Eq. (182) to the other Wigner-Dyson classes. These
random matrices were introduced by Wigner to make some predictions about the
level spectra of complex nuclei.

• However, there is a question of what the effect of interactions would be which ulti-
mately are strong in nuclei. This was first addressed by French & Wong, and Bohigas
& Flores in the early 70s - in modern notation the Hamiltonain is

HSY K4 =
1

√
2N

3/2

∑
a,b,c,d

Ua,b,c,dc
†
ac
†
bcccd, (186)

with 〈Ua1,a2,a3,a4〉dis = 0, 〈Ua1,a2,a3,a4U∗a′1,a′2,a′3,a′4〉dis = U2
∏4

i=1 δai,a′i . This model was

revisted much later by Sachdev and Ye (early 90’s), Georges, Parcollet and Sachdev
(around 2000) and by Kitaev (mid 2010s) as a toy model of

– a non-Fermi liquid

– a tractable AdS/CFT duality

– and of many-body quantum chaos
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Figure 15: Normalized density of states correlator ∆2〈ρ(ε+ ω/2)ρ(ε− ω/2)〉 = R2(ω) + 1.

Figure 16: Schematic behavior of the funcion C(t).
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6 What is quantum chaos? Definitions

In classical physics:

• Chaos: Exponential sensitivity of phase-space trajectory to starting values.
A typical definition for the Lyapunov exponent describing this sensitivity is

max
µ,ν=x1,...xd

∣∣∣∣∂qµ(t)

∂qν(0)

∣∣∣∣ ∼ eλt. (187)

Note that

∂qµ(t)

∂qν(0)
=

d∑
ρ=1

∂qµ(t)

∂qρ(0)

∂pν(0)

∂pρ(0)
− ∂qµ(t)

∂pρ(0)

∂pν(0)

∂qρ(0)
= {qµ(t), pν(0)}P.B. (188)

In quantum physics:

• There are several definitions for Quantum Chaos

1. Bohigas-Giannoni-Schmidt conjecture : Any classically chaotic system displays
random matrix statistics upon canonical quantization.

⇒: One definition: Random matrix statistics ≡ Quantum Chaos.

This is related to the Eigenstate thermalization hypothesis (which is more a
statement about ergodicity, but related to the first definition:)

〈Ei|V |Ej〉 = tr [ρV ] + e−S(E)/2f(E,ω)Rij (189)

for any sufficiently local operator V , eigenstates |Ei〉 at energy E and thermal
density matrix defined by E = tr [ρH]. S = −tr [ρ ln(ρ)] is the entropy, f a
smooth function and R a random matrix.

2. Quantum Lyapunov exponents and generalization of Eq. (187) : Operator spread-
ing using canonical replacement of Poisson bracket by commutator

{qµ(t), pν(0)}P.B. → −i[q̂µ(t), p̂ν(0)], (190)

or more generally for arbitrary non-commuting observables

{A(t), B(0)}P.B. → −i[Â(t), B(0)] ≡ Ô(t). (191)

A natural generalization of the definition of the Lyapunov exponent would
imply looking at〈O(t)〉 = −i[q̂µ(t), p̂ν(0)], where 〈. . . 〉 could be the average
w.r.t the ground state or w.r.t. a thermal ensemble with density matrix ρ =
e−βH/tr [e−βH ]. However, this not a useful definition, because
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– Correlators will decay, not increase, as t→∞
– (this is related) the hermitian operator O(t) is not positive definite and can

thus have both positive and negatie contributions in the thermal average.

Instead, what is considered is

C̃(t) = −〈[A(t), B(0)]2〉 = −tr [[A(t), B(0)]2ρ] (192)

or its regularized version (thermofield double)

C(t) = −tr [[A(t), B(0)]ρ−1/2[A(t), B(0)]ρ−1/2] (193)

– Note that Eq. (193) contains terms 〈A(t)B(0)A(t)B(0)〉 which are out of
time order correlators (OTOC).

– Typical behavior is presented in Fig. 16 for a system with N quantum
degrees of freedom

(a) At t = 0: C(0) is a constant which can be ∼ 1 (but it’s not so important
whether it’s O(1) or small)

(b) td, the dissipation time (or quasiparticle relaxation rate). At this time,
two point correlators have died out, and C(td) ∼ 1/N .

(c) td < t < t∗: C(t) ∼ e2λA,Bt/N (This is the most interesting regime and
defines the Lyapunov exponent.)

(d) t∗, the scrambling time (or Ehrenfest time in the case of quantized single
particle classical chaotic systems). C(t) saturates beyond t∗
The word scrambling is a quantum information theoretical word and
refers to the following Gedanken-quench: Assume you have a quantum
system with large number N of degrees of freedom. Even in a pure
state, due to ETH, the entanglement entropy of a small subsystem can
be assumed to be maximal, i.e. the information is smeared (scrambeled)
over the entire system. Now perturb this small number of degrees of
freedom and let the system evolve freely. The time after which this
information from the local quench is scrambeled into the system is the
scrambling time.

– A definition of quantum chaos is a regime of exponential growth for any pair
A,B and the and the quantum Lyapunov exponent is thus λ = maxV,W [λA,B].

The interest in the quantum chaos and ergodicity is multifold

• One may ask the question, how quickly a system can thermalizes. This is closely re-
lated to the dissipation time td and the lifetime τ of local excitations (quasiparticles),
which, amongst others, also appears in transport. It has been argued that there is a
universal lower bound for this

1

τ
.

1

τPlanck

=
T

~
(194)
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• One may further ask the question, about the rate of operator spreading λ, which is
the question about the strength of quantum chaos. Again, there is a conjecture for
an upper bound

λ ≤ 2πT/~ (Maldacena, Shenker, Stanford bound on quantm chaos) (195)

This of course has an implication on the minimal scrambling time t∗ (defined by
C(t∗) ∼ 1), and which thus is t∗ ∼ ln(N)/λ and therefore is bound from below (fast
scrambling conjecture, saturated by some black holes.)

7 The SYK Model

We now return to Eq. (186) (and drop any quadratic terms of the kind of Eq. (182)). The
model is named after Sachdev, Ye and Kitaev.

7.1 Self-consistent solution

The self-consistent equations in this case are given diagrammatically by Fig. 17, right.

G(iε) = [iε+ µ− Σ(iε)]−1 (196a)

Σ(τ) = −U2G(τ)2G(−τ), (196b)

For simplicty, we set µ = 0 (half-filling) and T = 0 to begin with. As before, we assume
that Σ(iε) dominates over iε in the infrared, so that in a two-time index notation (of course
all Green’s function etc. only depend on the difference) and make the Ansatz

G(τ) = −#sign(τ)|τ |−2∆ (197)

for long time scales τU � 1 which is equivalent to

G(iε) ∼ |ε|2∆−1 (198)

On the other hand

Σ(τ) ∼ U2sign(τ)|τ |−6∆ ⇒ Σ(iε) ∼ −isign(ε)|ε|6∆−1 ∼ 1/G(iε). (199)
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Figure 17: Left: Self energy for SYK-2 (i.e. random matrix theory, Eqs. (183) Right: Self
energy equation for the SYK-4 model.

From comparing Eqs. (198) and (199) we find the condition

2∆− 1 = 1− 6∆⇔ ∆ = 1/4. (200)

Comments:

• Indeed the self-energy Σ ∼ −isign(ε)|ε|1/2 dominates over iε

• Contrary to the case of RMT, where Σ = const., here the self energy and the as-
sociated decay rate are not only statistical but instead describe a proper non-Fermi
liquid.

• At finite temperature, the propagator is (Parcollet and Georges)

G(τ) = −sign(τ)#

(
πT

sin(πTτ)

)1/2

. (201)

Note the factor which smells like CFT.

7.2 Reparametrization symmetry

We now will uncover a low-energy reparametrization symmetry (i.e. a 1D conformal sym-
metry). In the IR, and written in time, the self-consistent equations are as follows

∫
dτΣ(τ1, τ)G(τ, τ2) = −δ(τ1 − τ2) (202a)

Σ(τ1, τ2) = −U2G(τ1, τ2)2G(τ2, τ1). (202b)
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Let’s use a reparametrization τ 7→ f(τ) for some f(τ) with f ′(τ) > 0 and assume the
following transformation of Green’s functions (i.e. ∆ is the dimension of fermions)

G(τ1, τ2) 7→ G(f(τ1), f(τ2))f ′(τ1)∆f ′(τ2)∆ (203)

Σ(τ1, τ2) 7→ Σ(f(τ1), f(τ2))f ′(τ1)3∆f ′(τ2)3∆ (204)

Clearly the factor of 3 is to account for Eq. (202b). Eq. (202a) implies∫
df(τ)Σ(f(τ1), f(τ))G(f(τ), f(τ2)) =

∫
dτf ′(τ)

Σ(τ1, τ)

f ′(τ1)3∆f ′(τ)3∆

G(τ, τ2)

f ′(τ)∆f ′(τ2)∆

∆= 1
4= − δ(τ1 − τ2)

f ′(τ1)∆f ′(τ2)∆

= −δ(f(τ1)− f(τ2)). (205)

Comments

• Indeed, the finite temperature propagator can be obtained by a conformal map of
the kind τline = tan(πτcircleT ), where τcircle ∈ [−β/2, β/2).

• The emergent reparametrization symmetry, called Diff (S1) on the circle, plays a role
analogous to U(2R)/U(R) × U(R) for random matrix theory in class A, and will
generate a set of (quasi-)softmodes.

• The reparametrization symmetry is explicitly broken at the UV (this is somewhat
analogous to the ω term breaking the symmetry of soft-modes in the case of ran-
dom matrix theory). The only actual UV transformations (on the line) are Möbius
transformations, i.e. SL(2,R)

τ 7→ a+ bτ

c+ dτ
(206)

7.3 Effective action

We now look for an action which is somewhat analogous to Eq. (182) and accounts for
fluctuations of the quasi-soft modes.

The fluctuations are best parametrized in terms of arbitrary f(τ) and the effective action
should have the property Seff(a+bτ

c+dτ
) = 0.

The simplest action which suffices this condition is

Seff = −Nγ
4π2

∫ β

0

dτSch (tan(πTf(τ)), τ)), (207)
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where Sch (g, τ) = g′′′/g′ − 3
2
(g′′/g′)2.

Comments:

• It is a nearly trivial Mathematica excercise to explicitly check Sch
(
a+bτ
c+dτ

, τ
)

= 0.

• This action can also be derived using a series of Hubbard-Stratonovich decouplings
and expansion about the saddle point. The parameter γ is then obtained to be #/U .

• The functional integral only runs over the massive modes (it excludes the Möbius
transformations). The result leads to the entropy near zero temperature (Georges-
Parcollet-Sachdev PRB 2001)

S|T→0 = N (s0 + γT + . . . ) (208)

Clearly γ is the specific heat. More counterintuitively, s0 = G
π

+ ln(2)
4
≈ 0.46 is

the zero temperature entropy (G is the Catalan constant - s0 is strongly related to
the Bekenstein-Hawking entropy of black holes). Note that s0 does not stem from
a degenerate ground state, but from a many-body level spacing ∆ ∼ e−N (this is
untypical, usual in many-body states, e.g. FL with quasiparticles, the level spacing
above the ground state is 1/N , where N in this case is system size).

• Actually, in the present case of the complex SYK, there are additional soft modes
corresponding to the U(1) gauge symmetry.

7.4 OTOC, quantum chaos, scrambling.

In the regime 1� τU < βU � N (i.e. requiring intermediate temperatures J/N � T �
J) one may approximate the integration over the quasi-Goldstone modes by a Gaussian
integral. We use this to calculate the operator spreading

C(t) = −〈[c†(t), c(0)]2〉. (209)

These operators are rewritten in terms of f(τ) near the saddlepoint and ultimately one
finds after a rather tedious integral over the soft modes that

C(τ) ∼ βU

N

π

2
sin (2πTτ)→ e2πTt/N. (210)

This demonstrates that the SYK model saturates the conjectured bound on quantum chaos.
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